Skip to main content

Pytest plugin for asserting data against voluptuous schema.

Project description

PyPI Package latest release Supported versions Supported implementations License Travis-CI Coveralls

pytest-voluptuous

A pytest plugin for asserting data against voluptuous schema.

Common use case is to validate HTTP API responses (in your functional tests):

import requests
from pytest_voluptuous import S, Partial, Exact
from voluptuous.validators import All, Length

def test_pypi():
   resp = requests.get('https://pypi.org/pypi/pytest/json')
   assert S({
      'info': Partial({
          'package_url': 'https://pypi.org/project/pytest/',
          'platform': 'INVALID VALUE',
          'description': Length(max=10),
          'downloads': list,
          'classifiers': dict,
      }),
      'releases': dict,
      'urls': int
   }) == resp.json()

If validation fails, comparison returns False and assert fails, printing error details like:

E       AssertionError: assert failed due to validation error(s):
E         - info.platform: not a valid value for dictionary value (actual: 'unix')
E         - info.description: length of value must be at most 10 for dictionary value (actual: ".. image:: https://...")
E         - info.downloads: expected list for dictionary value (actual: {'last_month': -1, 'last_week': -1, 'last_day': -1})
E         - info.classifiers: expected dict for dictionary value (actual: [u'Development Status :: 6 - Mature', ...])
E         - last_serial: extra keys not allowed (actual: 4422291)
E         - urls: expected int (actual: [{u'has_sig': False, u'upload_time': u'2018-10-27T16:31:24', ...}])

Install

Works on python 2.7 and 3.4+:

pip install pytest-voluptuous

Changelog

See CHANGELOG.

Features

  • Provides utility schemas (S, Exact and Partial) to cut down boilerplate.

  • Implement a pytest hook to provide error details on assert failure.

  • Print descriptive validation failure messages.

  • Equal and Unordered validators (contributed to voluptuous project, available in 0.10+).

Why?

Because writing:

>>> r = {'info': {'package_url': 'https://pypi.org/pypi/pytest'}}
>>> assert 'info' in r
>>> assert 'package_url' in r['info']
>>> assert r['info']['package_url'] == 'https://pypi.org/pypi/pytest'

…is just way too annoying.

Why not JSON schema? It’s too verbose, too inconvenient. JSON schema will never match the convenience of a validation library that can utilize the goodies of the platform.

Why voluptuous and not some other library? No special reason - but it’s pretty easy to use and understand. Also, the syntax is quite compact.

Usage

Intro

Start by specifying a schema:

>>> from pytest_voluptuous import S, Partial, Exact
>>> from voluptuous.validators import All, Length
>>> schema = S({
...     'info': Partial({
...         'package_url': 'https://pypi.org/project/pytest/',
...         'platform': 'unix',
...         'description': Length(min=100),
...         'downloads': dict,
...         'classifiers': list,
...     }),
...     'urls': list
... })

Then load up the data to validate:

>>> import requests
>>> data = requests.get('https://pypi.org/pypi/pytest/json').json()

Now if you assert this, the data will be validated against the schema, but instead of raising an error, the comparison will just evaluate to False which fails the assert:

>>> assert data == schema
Traceback (most recent call last):
    ...
AssertionError

Now getting AssertionError in case the data doesn’t match the schema is not very nice but don’t worry - there’s no pytest magic in play here but once you run through pytest you’ll rather get:

E       AssertionError: assert failed due to validation error(s):
E         - info.platform: not a valid value for dictionary value (actual: 'unix')
E         - info.description: length of value must be at most 10 for dictionary value (actual: ".. image:: https://docs.pytest.org/en/latest/_static/pytest1.png\n   :target: https://docs.pytest.org/en/latest/\n   :align: center\n   :alt: pytest\n\n\n------\n\n.. image:: https://img.shields.io/pypi/v/pytest.svg\n    :target: https://pypi.org/project/pytest/\n\n.. image:: https://img.shields.io/conda/vn/conda-forge/pytest.svg\n    :target: https://anaconda.org/conda-forge/pytest\n\n.. image:: https://img.shields.io/pypi/pyversions/pytest.svg\n    :target: https://pypi.org/project/pytest/\n\n.. image:: https://codecov.io/gh/pytest-dev/pytest/branch/master/graph/badge.svg\n    :target: https://codecov.io/gh/pytest-dev/pytest\n    :alt: Code coverage Status\n\n.. image:: https://travis-ci.org/pytest-dev/pytest.svg?branch=master\n    :target: https://travis-ci.org/pytest-dev/pytest\n\n.. image:: https://ci.appveyor.com/api/projects/status/mrgbjaua7t33pg6b?svg=true\n    :target: https://ci.appveyor.com/project/pytestbot/pytest\n\n.. image:: https://img.shields.io/badge/code%20style-black-000000.svg\n    :target: https://github.com/ambv/black\n\n.. image:: https://www.codetriage.com/pytest-dev/pytest/badges/users.svg\n    :target: https://www.codetriage.com/pytest-dev/pytest\n\nThe ``pytest`` framework makes it easy to write small tests, yet\nscales to support complex functional testing for applications and libraries.\n\nAn example of a simple test:\n\n.. code-block:: python\n\n    # content of test_sample.py\n    def inc(x):\n        return x + 1\n\n\n    def test_answer():\n        assert inc(3) == 5\n\n\nTo execute it::\n\n    $ pytest\n    ============================= test session starts =============================\n    collected 1 items\n\n    test_sample.py F\n\n    ================================== FAILURES ===================================\n    _________________________________ test_answer _________________________________\n\n        def test_answer():\n    >       assert inc(3) == 5\n    E       assert 4 == 5\n    E        +  where 4 = inc(3)\n\n    test_sample.py:5: AssertionError\n    ========================== 1 failed in 0.04 seconds ===========================\n\n\nDue to ``pytest``'s detailed assertion introspection, only plain ``assert`` statements are used. See `getting-started <https://docs.pytest.org/en/latest/getting-started.html#our-first-test-run>`_ for more examples.\n\n\nFeatures\n--------\n\n- Detailed info on failing `assert statements <https://docs.pytest.org/en/latest/assert.html>`_ (no need to remember ``self.assert*`` names);\n\n- `Auto-discovery\n  <https://docs.pytest.org/en/latest/goodpractices.html#python-test-discovery>`_\n  of test modules and functions;\n\n- `Modular fixtures <https://docs.pytest.org/en/latest/fixture.html>`_ for\n  managing small or parametrized long-lived test resources;\n\n- Can run `unittest <https://docs.pytest.org/en/latest/unittest.html>`_ (or trial),\n  `nose <https://docs.pytest.org/en/latest/nose.html>`_ test suites out of the box;\n\n- Python 2.7, Python 3.4+, PyPy 2.3, Jython 2.5 (untested);\n\n- Rich plugin architecture, with over 315+ `external plugins <http://plugincompat.herokuapp.com>`_ and thriving community;\n\n\nDocumentation\n-------------\n\nFor full documentation, including installation, tutorials and PDF documents, please see https://docs.pytest.org/en/latest/.\n\n\nBugs/Requests\n-------------\n\nPlease use the `GitHub issue tracker <https://github.com/pytest-dev/pytest/issues>`_ to submit bugs or request features.\n\n\nChangelog\n---------\n\nConsult the `Changelog <https://docs.pytest.org/en/latest/changelog.html>`__ page for fixes and enhancements of each version.\n\n\nLicense\n-------\n\nCopyright Holger Krekel and others, 2004-2018.\n\nDistributed under the terms of the `MIT`_ license, pytest is free and open source software.\n\n.. _`MIT`: https://github.com/pytest-dev/pytest/blob/master/LICENSE\n\n\n")
E         - info.downloads: expected list for dictionary value (actual: {'last_month': -1, 'last_week': -1, 'last_day': -1})
E         - info.classifiers: expected dict for dictionary value (actual: [u'Development Status :: 6 - Mature', u'Intended Audience :: Developers', u'License :: OSI Approved :: MIT License', u'Operating System :: MacOS :: MacOS X', u'Operating System :: Microsoft :: Windows', u'Operating System :: POSIX', u'Programming Language :: Python :: 2', u'Programming Language :: Python :: 2.7', u'Programming Language :: Python :: 3', u'Programming Language :: Python :: 3.4', u'Programming Language :: Python :: 3.5', u'Programming Language :: Python :: 3.6', u'Programming Language :: Python :: 3.7', u'Topic :: Software Development :: Libraries', u'Topic :: Software Development :: Testing', u'Topic :: Utilities'])
E         - last_serial: extra keys not allowed (actual: 4422291)
E         - urls: expected int (actual: [{u'has_sig': False, u'upload_time': u'2018-10-27T16:31:24', u'comment_text': u'', u'python_version': u'py2.py3', u'url': u'https://files.pythonhosted.org/packages/02/75/d041ed00994fbac4c5183e6f4bf6c906506bef8da7a57ef3fc825f171020/pytest-3.9.3-py2.py3-none-any.whl', u'md5_digest': u'150289b7b6658b62b3eddb96c4474e9d', u'downloads': -1, u'requires_python': u'>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*', u'filename': u'pytest-3.9.3-py2.py3-none-any.whl', u'packagetype': u'bdist_wheel', u'digests': {u'sha256': u'bf47e8ed20d03764f963f0070ff1c8fda6e2671fc5dd562a4d3b7148ad60f5ca', u'md5': u'150289b7b6658b62b3eddb96c4474e9d'}, u'size': 214163}, {u'has_sig': False, u'upload_time': u'2018-10-27T16:31:26', u'comment_text': u'', u'python_version': u'source', u'url': u'https://files.pythonhosted.org/packages/28/09/f73d49a5b0b714e2d4712f044686cb8fa954aac15f4b7ea557049210179f/pytest-3.9.3.tar.gz', u'md5_digest': u'32ca214ba15bbd8680d9d807a371c385', u'downloads': -1, u'requires_python': u'>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*', u'filename': u'pytest-3.9.3.tar.gz', u'packagetype': u'sdist', u'digests': {u'sha256': u'a9e5e8d7ab9d5b0747f37740276eb362e6a76275d76cebbb52c6049d93b475db', u'md5': u'32ca214ba15bbd8680d9d807a371c385'}, u'size': 882503}])

Details

Use == operator to do exact validation:

>>> data = {'foo': 1, 'bar': True}
>>> S({'foo': 1, 'bar': True}) == data
True

We omit assert in these examples (for easier doctesting).

Use <= to do partial validation (to allow extra keys, that is):

>>> S({'foo': 1}) == data  # not valid
False
>>> S({'foo': 1}) <= data  # valid
True

The operator you choose gets inherited, so with test data of:

>>> data = {
...     'outer1': {
...         'inner1': 1,
...         'inner2': True
...     },
...     'outer2': 'foo'
... }

With == you must provide exact value also in nested context:

>>> S({
...     'outer1': {
...         'inner1': 1,  # this would be valid but...
...         # missing 'inner2'
...     },
...     'outer2': 'foo'
... }) == data
False
>>> S({
...     'outer1': {
...         'inner1': int,  # exact/partial matching
...         'inner2': bool  # is for keys only
...     },
...     'outer2': 'foo'
... }) == data
True

<= implies partial matching:

>>> S({
...     'outer1': {
...         'inner1': int,
...         # 'inner2' missing but that's ok
...     },
...     # 'outer2' is missing too
... }) <= data
True

When you need to mix and match operators, you can loosen matching with Partial:

>>> S({
...     'outer1': Partial({
...         'inner1': int
...         # 'inner2' ok to omit as scope is partial
...     }),
...     'outer2': 'foo'  # can't be missing as outer scope is exact
... }) == data
True

And stricten with Exact:

>>> S({
...     'outer1': Exact({
...         'inner1': int,
...         'inner2': bool
...     }),
...     # 'outer2' can be missing as outer scope is partial
... }) <= data
True

Remember, matching mode is inherited, so you may end up doing stuff like this:

>>> data['outer1']['inner1'] = {'prop': 1}
>>> S({
...     'outer1': Partial({
...         'inner1': Exact({
...             'prop': 1
...         })
...     }),
...     'outer2': 'foo'
... }) == data
True

There is no >=. If you want to declare schema keys that may be missing, use Optional:

>>> from voluptuous.schema_builder import Optional
>>> S({Optional('foo'): str}) == {'extra': 1}
False
>>> S({'foo': str}) == {}
False
>>> S({'foo': str}) <= {}
False
>>> S({Optional('foo'): str}) == {}
True
>>> S({Optional('foo'): str}) <= {'extra': 1}
True

Or, if you want to make all keys optional, override required:

>>> from voluptuous.schema_builder import Required
>>> S({'foo': str}, required=False) == {}
True

In these cases, if you want to require a key:

>>> S({'foo': str, Required('bar'): 1}, required=False) == {}
False
>>> S({'foo': str, Required('bar'): 1}, required=False) == {'bar': 1}
True

That’s it. For available validators, look into voluptuous docs.

Gotchas

Voluptuous 0.9.3 and earlier:

In voluptuous pre-0.10.2 [] matches any list, not an empty list. To declare an empty list, use Equal([]).

Similarly, in voluptuous pre-0.10.2, {} doesn’t always match an empty dict. If you’re inside a Schema({...}, extra=PREVENT_EXTRA) (or Exact), {} does indeed match exactly {}. However, inside Schema({...}, extra=ALLOW_EXTRA) (or ``Partial), it matches any dict (because any extra keys are allowed). To declare an empty dict, use Equal({}).

Voluptuous 0.10.0+:

In voluptuous 0.10.0+ {} and [] evaluate as empty dict and empty list, so you don’t need above workarounds.

Always use dict and list to validate dict or list of any size. It works despite voluptuous version.

Any version:

[str, int] matches any list that contains both strings and ints (in any order and 1-n times). To validate a list of fixed length with those types in it, use ExactSequence([str, int]) and Unordered([str, int]) when the order has no meaning. You can also use values inside these as in ExactSequence([2, 3]).

License

Apache 2.0 licensed. See LICENSE for more details.

Changelog

1.2.0 (2020-06-09)

New:

  • #7: Officially support python 3.7 and 3.8. Add python_requires identifier to package.

Fix:

  • #6: Improve the slightly confusing assertion error message. Thanks @bjoluc!

1.1.0 (2018-10-31)

New:

  • #3: Include actual value in error messages for easier debugging (and remove duplication of error path in error message). Thanks @Turbo87!

Fix:

  • Commit: Skip path prefix in error output, if path is empty (when error is on “main level”). Thanks @Turbo87!

1.0.2 (2018-02-16)

Fix:

1.0.1 (2017-01-10)

First public version.

1.0.0 (2016-12-07)

First version.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pytest_voluptuous-1.2.0-py2.py3-none-any.whl (10.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pytest_voluptuous-1.2.0-py2.py3-none-any.whl.

File metadata

  • Download URL: pytest_voluptuous-1.2.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 10.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.20.0 setuptools/44.1.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/2.7.15

File hashes

Hashes for pytest_voluptuous-1.2.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 a3856e9812b219fec1c3f2fd8249c0bac6927e1d5e52a3961e4ae903f54d494f
MD5 00bd0bcc0da6f996be795d23e0481d45
BLAKE2b-256 9be107b3169ccc9a77b210a1fc0733af937dcfc423a8c1cd808c6a34fc3b8258

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page