Python package for deal with logical formulas and formal systems

## Pythogic         Python package for deal with logical formulas and formal systems.

### Usage

First of all, create symbols and an alphabet

```from pythogic.base.Alphabet import Alphabet
from pythogic.base.Symbol import Symbol

a_sym = Symbol("a")
b_sym = Symbol("b")
c_sym = Symbol("c")
alphabet = Alphabet({a_sym, b_sym, c_sym})
```

Create some formulas:

```from pythogic.base.Formula import AtomicFormula, TrueFormula, FalseFormula, Not, And, Or

# Propositions
a = AtomicFormula(a_sym)
b = AtomicFormula(b_sym)
c = AtomicFormula(c_sym)

# Elementary formulas
not_a = Not(a)
not_a_and_b = And(Not(a), b)
not_a_or_c = Or(not_a, c)
true = TrueFormula()
false = FalseFormula()
```

Using Propositional Calculus:

```from pythogic.pl.PL import PL
from pythogic.pl.semantics.PLInterpretation import PLInterpretation

# A dictionary which assign each symbol to a truth value
symbol2truth = {
a_sym: True,
b_sym: False,
c_sym: True
}

# The propositional interpretation
I = PLInterpretation(alphabet, symbol2truth)

# main class which contains useful methods
PL = PL(alphabet)

PL.truth(a, I)              # returns true
PL.truth(b, I)              # returns false
PL.truth(c, I)              # returns true
PL.truth(not_a, I)          # returns false
PL.truth(not_a_and_b, I)    # returns false
PL.truth(not_a_or_c, I)     # returns true
PL.truth(true, I)           # returns true
PL.truth(false, I)          # returns false
```

### Features

• Compose logical formula by common syntax rules;
• Implementation of several semantics (FOL Interpretation, finite trace, etc.);
• Support for several logical formal systems: Propositional Logic, First-order Logic, REf, LTLf, LDLf;

## History

### 0.1.0 (2018-02-20)

• First release on PyPI.

### 0.2.0 (2018-02-23)

• First-Order logic support (Formulas, Interpretations, Assignment, Truth of the formulas).

### 0.2.1 (2018-02-23)

• Fix on the repo.

### 0.2.2 (2018-02-25)

• Refactoring of the formulas and formal systems functionalities.
• Implemented LDLf.

### 0.2.3 (2018-02-25)

• “To negative normal form” procedure for LDLf formulas.

### 0.2.4 (2018-02-06)

• Support for LDLf for Empty Traces.

## Project details 0.2.9 0.2.8 0.2.7 0.2.6

This version 0.2.5 0.2.4 0.2.3 0.2.2 0.2.1 0.2.0 0.1.2 0.1.1