Migration tooling from Google App Engine (webapp2, ndb) to python-cdd supported (FastAPI, SQLalchemy).
Project description
cdd-python-gae
Migration tooling from Google App Engine (webapp2, ndb) to python-cdd supported (FastAPI, SQLalchemy).
Public SDK works with filenames, source code, and even in memory constructs (e.g., as imported into your REPL). CLI available also.
Note: Parquet files are supported as it takes too long to run NDB queries to batch acquire / batch insert into SQL.
Install package
PyPi
pip install python-cdd-gae
Master
pip install -r https://raw.githubusercontent.com/offscale/cdd-python-gae/master/requirements.txt
pip install https://api.github.com/repos/offscale/cdd-python-gae/zipball#egg=cdd
Goal
Migrate from Google App Engine to cloud-independent runtime (e.g., vanilla CPython 3.11 with SQLite).
Relation to other projects
This was created independent of cdd-python
project for two reasons:
- Unidirectional;
- Relevant to fewer people.
SDK
Approach
Traverse the AST for ndb and webapp2.
Advantages
- Automatic conversion from NDB to SQLalchemy
- Scripts to migrate the data
Disadvantages
- Doesn't handle the internal NDB functions
Alternatives
- Hand weave ;)
Minor other use-cases this facilitates
- One could build this into a self-service migration system
- The intermediary layers are on BigQuery and Google Object Storage, both of which are useful in their own right
CLI for this project
$ python -m cdd_gae --help
usage: python -m cdd_gae gen [-h] [--parse {ndb,parquet,webapp2}] --emit
{argparse,class,function,json_schema,pydantic,sqlalchemy,sqlalchemy_table}
-i INPUT_FILE -o OUTPUT_FILE [--name NAME]
[--dry-run]
options:
-h, --help show this help message and exit
--parse {ndb,parquet,webapp2}
What type the input is.
--emit {argparse,class,function,json_schema,pydantic,sqlalchemy,sqlalchemy_table}
What type to generate.
-i INPUT_FILE, --input-file INPUT_FILE
Python file to parse NDB `class`es out of
-o OUTPUT_FILE, --output-file OUTPUT_FILE
Empty file to generate SQLalchemy classes to
--name NAME Name of function/class to emit, defaults to inferring
from filename
--dry-run Show what would be created; don't actually write to
the filesystem.
python -m cdd_gae gen
$ python -m cdd_gae gen --help
usage: python -m cdd_gae gen [-h] [--parse {ndb,parquet,webapp2}] --emit
{argparse,class,function,json_schema,pydantic,sqlalchemy,sqlalchemy_table}
-i INPUT_FILE -o OUTPUT_FILE [--name NAME]
[--dry-run]
options:
-h, --help show this help message and exit
--parse {ndb,parquet,webapp2}
What type the input is.
--emit {argparse,class,function,json_schema,pydantic,sqlalchemy,sqlalchemy_table}
What type to generate.
-i INPUT_FILE, --input-file INPUT_FILE
Python file to parse NDB `class`es out of
-o OUTPUT_FILE, --output-file OUTPUT_FILE
Empty file to generate SQLalchemy classes to
--name NAME Name of function/class to emit, defaults to inferring
from filename
--dry-run Show what would be created; don't actually write to
the filesystem.
python -m cdd_gae ndb2sqlalchemy_migrator
$ python -m cdd_gae ndb2sqlalchemy_migrator --help
usage: python -m cdd_gae ndb2sqlalchemy_migrator [-h] --ndb-file NDB_FILE
--sqlalchemy-file
SQLALCHEMY_FILE
--ndb-mod-to-import
NDB_MOD_TO_IMPORT
--sqlalchemy-mod-to-import
SQLALCHEMY_MOD_TO_IMPORT -o
OUTPUT_FOLDER [--dry-run]
options:
-h, --help show this help message and exit
--ndb-file NDB_FILE Python file containing the NDB `class`es
--sqlalchemy-file SQLALCHEMY_FILE
Python file containing the NDB `class`es
--ndb-mod-to-import NDB_MOD_TO_IMPORT
NDB module name that the entity will be imported from
--sqlalchemy-mod-to-import SQLALCHEMY_MOD_TO_IMPORT
SQLalchemy module name that the entity will be
imported from
-o OUTPUT_FOLDER, --output-folder OUTPUT_FOLDER
Empty folder to generate scripts that migrate from one
NDB class to one SQLalchemy class
--dry-run Show what would be created; don't actually write to
the filesystem.
python -m cdd_gae gen parquet2table
$ python -m cdd_gae parquet2table --help
usage: python -m cdd_gae parquet2table [-h] -i FILENAME
[--database-uri DATABASE_URI]
[--table-name TABLE_NAME] [--dry-run]
options:
-h, --help show this help message and exit
-i FILENAME, --input-file FILENAME
Parquet file
--database-uri DATABASE_URI
Database connection string. Defaults to `RDBMS_URI` in
your env vars.
--table-name TABLE_NAME
Table name to use, else use penultimate underscore
surrounding word form filename basename
--dry-run Show what would be created; don't actually write to
the filesystem.
Data migration
The most efficient way seems to be:
- Backup from NDB to Google Cloud Storage
- Import from Google Cloud Storage to Google BigQuery
- Export from Google BigQuery to Apache Parquet files in Google Cloud Storage
- Download and parse these Parquet files
- Use binary protocol to bulk insert into PostgreSQL
For the following scripts set these export
s:
DNS_NAME
GOOGLE_BUCKET_NAME
GOOGLE_CLOUD_PROJECT
GOOGLE_CLOUD_ZONE
GOOGLE_PROJECT_NAME
INSTANCE_NAME
0. Backup from NDB to Google Cloud Storage
set -euo pipefail
entities_processed=0
echo 'Exporting datastore to bucket: '"$GOOGLE_CLOUD_BUCKET"
for entity in kind0 kind1 kind2; do
gcloud datastore export "$GOOGLE_CLOUD_BUCKET" --project "$GOOGLE_CLOUD_PROJECT" --kinds "$entity" --async
entities_processed=$((entities_processed + 1))
if [ "$entities_processed" -eq 18 ]; then
# Overcome quota issues
echo 'Sleeping for 2 minutes to overcome quota issues'
sleep 2m
entities_processed=0
fi
done
printf 'Tip: To see operations that are still being processed, run:\n%s\n' \
'gcloud datastore operations list --format=json | jq '"'"'map(select(.metadata.common.state == "PROCESSING"))'"'"
1. Import from Google Cloud Storage to Google BigQuery
#!/usr/bin/env bash
set -euo pipefail
declare -r DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
while [[ $(gcloud datastore operations list --format=json | jq -re 'map(select(.metadata.common.state == "PROCESSING"))') != "[]" ]]; do
echo 'Waiting for operations to finish (sleeping for 5 minutes then trying again)'
sleep 5m
done
echo 'Generating script that imports datastore bucket to bq to: '"'""$DIR"'/2_bucket_to_bq.bash'"'"
printf '#!/usr/bin/env bash\n\nbq mk "%s"\n' 'CollectionName' > "$DIR"'/2_bucket_to_bq.bash'
gsutil ls "$GOOGLE_CLOUD_BUCKET"'/**/all_namespaces/kind_*' | python3 -c 'import sys, posixpath, fileinput; f=fileinput.input(encoding="utf-8"); d=dict(map(lambda e: (posixpath.basename(posixpath.dirname(e)), posixpath.dirname(e)), sorted(f))); f.close(); print("\n".join(map(lambda k: "( bq mk \"CollectionName.{k}\" && bq --location=US load --source_format=DATASTORE_BACKUP \"CollectionName.{k}\" \"{v}/all_namespaces_{k}.export_metadata\" ) &".format(k=k, v=d[k]), sorted(d.keys()))),sep="");' >> "$DIR"'/2_bucket_to_bq.bash'
printf 'printf '"'"'To see if any jobs are left run:%s%s%s%s\n' \
'\nbq ls --jobs=true --format=json | jq ' "'\"'\"'" \
'map(select(.status.state != "DONE"))' "'\"'\"'\n'" >> "$DIR"'/2_bucket_to_bq.bash'
# Then run `bash 2_bucket_to_bq.bash`
2. Export from Google BigQuery to Apache Parquet files in Google Cloud Storage
#!/usr/bin/env bash
set -euo pipefail
declare -r DATE_ISO8601="$(date -u --iso-8601)"
declare -r DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
while [[ $(bq ls --jobs=true --format=json | jq 'map(select(.status.state != "DONE"))') != "[]" ]]; do
echo 'Waiting for operations to finish (sleeping for 5 minutes then trying again)'
sleep 5m
done
echo 'Generating script that exports bq to datastore bucket in parquet format: '"'""$DIR"'/4_bq_to_parquet.bash'"'"
printf '#!/usr/bin/env bash\n\n' > "$DIR"'/4_bq_to_parquet.bash'
for entity in kind0 kind1 kind2; do
printf -v GOOGLE_CLOUD_BUCKET_PATH '%s/%s_0/%s/*' "$GOOGLE_CLOUD_BUCKET" "$DATE_ISO8601" "$entity"
printf "bq extract --location='%s' --destination_format='PARQUET' 'CollectionName.kind_%s' '%s' &\n" \
"$GOOGLE_CLOUD_REGION" "$entity" "$GOOGLE_CLOUD_BUCKET_PATH" >> "$DIR"'/4_bq_to_parquet.bash'
done
printf 'printf '"'"'To see if any jobs are left run:%s%s%s%s\n' \
'\nbq ls --jobs=true --format=json | jq ' "'\"'\"'" \
'map(select(.status.state != "DONE"))' "'\"'\"'\n'" >> "$DIR"'/4_bq_to_parquet.bash'
# Then run `bash 4_bq_to_parquet.bash`
3. Create node in Google Cloud
gcloud compute instances create "$INSTANCE_NAME" --project="$GOOGLE_CLOUD_PROJECT" --zone="$GOOGLE_CLOUD_ZONE" --machine-type=e2-standard-32 --network-interface=network-tier=PREMIUM,stack-type=IPV4_ONLY,subnet=default --maintenance-policy=MIGRATE --provisioning-model=STANDARD --scopes=https://www.googleapis.com/auth/devstorage.read_only,https://www.googleapis.com/auth/logging.write,https://www.googleapis.com/auth/monitoring.write,https://www.googleapis.com/auth/servicecontrol,https://www.googleapis.com/auth/service.management.readonly,https://www.googleapis.com/auth/trace.append --tags=http-server,https-server --create-disk=auto-delete=yes,boot=yes,device-name=$INSTANCE_NAME,image=projects/debian-cloud/global/images/debian-11-bullseye-v20230629,mode=rw,size=10,type=projects/$GOOGLE_PROJECT_NAME/zones/$GOOGLE_ZONE_NAME/diskTypes/pd-balanced --create-disk=device-name=2_5_tb,mode=rw,name=disk-1,size=2500,type=projects/$GOOGLE_PROJECT_NAME/zones/$GOOGLE_CLOUD_ZONE/diskTypes/pd-balanced --no-shielded-secure-boot --shielded-vtpm --shielded-integrity-monitoring --labels=goog-ec-src=vm_add-gcloud --reservation-affinity=an
4. Prepare instance
gcloud compute ssh "$INSTANCE_NAME" --command='sudo mkdir /data && sudo mkfs -t ext4 /dev/sdb && sudo mount "$_" "/data" && sudo chown -R $USER:$GROUP "$_" && sudo apt install -y python3-dev python3-venv libpq-dev moreutils git pwgen rsync gcc && python3 -m venv venv && . venv/bin/activate && python -m pip install -r https://raw.githubusercontent.com/offscale/cdd-python/master/requirements.txt && python -m pip install https://api.github.com/repos/offscale/cdd-python/zipball#egg=python-cdd && python -m pip install -r https://raw.githubusercontent.com/offscale/cdd-python-gae/master/requirements.txt && python -m pip install https://api.github.com/repos/offscale/cdd-python-gae/zipball#egg=python-cdd-gae'
5. Download Parquet files
# PS: This last bucket location can be found above as the `export`: `GOOGLE_CLOUD_BUCKET_PATH`
$ gcloud compute ssh "$INSTANCE_NAME" --command="gcloud storage cp -R 'gs://""$GOOGLE_BUCKET_NAME"'/2023-07-24_0/*' '/data'"
6. Install and serve PostgreSQL
gcloud compute ssh "$INSTANCE_NAME" --command='f="postgres-version-manager-go_Linux_x86_64.tar.gz"; curl -OL https://github.com/offscale/postgres-version-manager-go/releases/0.0.21/"$f" && tar xf "$f" && ./pvm-go --data-path /data/pg-data --username "$(pwgen -n1)" --password "$(pwgen -n1)" --database database_name_db --locale C.UTF-8 start && ./pvm-go stop && sudo adduser -gecos "" --disabled-password --quiet postgres && sudo chown -R $_:$_ /data/pg-data && sudo ./pvm-go -c ~/postgres-version-manager/pvm-config.json install-service systemd && sudo systemctl daemon-reload && sudo systemctl start postgresql'
# You might want to edit your "$($HOME/pvm-go get-path data)"'/pg_hba.conf' to enable connection to your db
# Or you can do:
$ export $($HOME/pvm-go env | xargs -L 1)
$ printf 'host\t%s\t%s\t0.0.0.0/0\tscram-sha-256\n' "$POSTGRES_DATABASE" "$POSTGRES_USERNAME" >> "$($HOME/pvm-go get-path data)"'/pg_hba.conf'
# You might also change your "$($HOME/pvm-go get-path data)"'/postgresql.conf' to enable connection to the correct address (or insecurely: listen_addresses = '*')
$ printf 'listen_addresses = '"'"'*'"'"'\n' >> "$($HOME/pvm-go get-path data)"'/postgresql.conf'
# Database connection string, take the output from that last command and replace "localhost" with:
$ declare -r IP_ADDR="$(gcloud compute instances describe "$INSTANCE_NAME" --flatten networkInterfaces[].accessConfigs[] --format 'csv[no-heading](networkInterfaces.accessConfigs.natIP)')"
# Go one step further and set a DNS name so it's easier, and so we can turn off/move the instance without worrying about a permanent IP, and for clustering
$ gcloud beta dns record-sets create "$DNS_NAME" --rrdatas="$IP_ADDR" --type=A --zone="$GOOGLE_ZONE"
7. Create the tables
# `gcloud compute scp` over '5_gen_parquet_to_sqlalchemy.bash' then run:
$ gcloud compute ssh "$INSTANCE_NAME" --command='bash 5_gen_parquet_to_sqlalchemy.bash && export RDBMS_URI="$($HOME/pvm-go uri)" && ~/venv/bin/python -m parquet_to_postgres.create_tables'
8. Import data from Parquet to PostgreSQL
After installing fd
for concurrency, run:
$ fd -tf . '/data' -E 'exclude_tbl' -x bash -c 'python -m cdd_gae parquet2table --table-name "$(basename ${0%/*})" -i "$0"' {}
Note connection string
$ gcloud compute ssh "$INSTANCE_NAME" --command='./pvm-go uri'
(replace localhost
with the $IP_ADDR
value, or $DNS_NAME
if you set that)
License
Licensed under either of
- Apache License, Version 2.0 (LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0)
- MIT license (LICENSE-MIT or https://opensource.org/licenses/MIT)
at your option.
Contribution
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for python_cdd_gae-0.0.17rc0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3f42df62296470a71d9cd0ebcd0eee6283c75c6ba75bd3dd55c372965eb11035 |
|
MD5 | 801e155d587001100e4c869af0ee51e3 |
|
BLAKE2b-256 | 65b11bcd6439c91c1db61c5fc725cb63f4e77e023eb0bacc5b59c2a346c52d19 |