Three methods of color transfer implemented in python.
Project description
Color Transfer in Python
Three methods of color transfer implemented in Python.
Output Examples
Input image | Reference image | Mean std transfer | Lab mean transfer | Pdf transfer + Regrain |
---|---|---|---|---|
Methods
Let input image be $I$, reference image be $R$ and output image be $O$. Let $f{I}(r, g, b)$, $f{R}(r, g, b)$ be probability density functions of $I$ and $R$'s rgb values.
-
Mean std transfer
$$O = (I - mean(I)) / std(I) * std(R) + mean(R).$$
-
Lab mean transfer[^1]
$$I' = rgb2lab(I)$$ $$R' = rgb2lab(R)$$ $$O' = (I' - mean(I')) / std(I') * std(R') + mean(R')$$ $$O = lab2rgb(O')$$
-
Pdf transfer[^2]
$O = t(I)$, where $t: R^3-> R^3$ is a continous mapping so that $f{t(I)}(r, g, b) = f{R}(r, g, b)$.
Requirements
Installation
From PyPi
pip install python-color-transfer
From source
git clone https://github.com/pengbo-learn/python-color-transfer.git
cd python-color-transfer
pip install -r requirements.txt
Demo
- To replicate the results in Output Examples, run:
python demo.py
Output
demo_images/house.jpeg: 512x768x3
demo_images/hats.png: 512x768x3
Pdf transfer time: 1.47s
Regrain time: 1.16s
Mean std transfer time: 0.09s
Lab Mean std transfer time: 0.09s
Saved to demo_images/house_display.png
demo_images/fallingwater.png: 727x483x3
demo_images/autumn.jpg: 727x1000x3
Pdf transfer time: 1.87s
Regrain time: 0.87s
Mean std transfer time: 0.12s
Lab Mean std transfer time: 0.11s
Saved to demo_images/fallingwater_display.png
demo_images/tower.jpeg: 743x1280x3
demo_images/sunset.jpg: 743x1114x3
Pdf transfer time: 2.95s
Regrain time: 2.83s
Mean std transfer time: 0.23s
Lab Mean std transfer time: 0.21s
Saved to demo_images/tower_display.png
demo_images/scotland_house.png: 361x481x3
demo_images/scotland_plain.png: 361x481x3
Pdf transfer time: 0.67s
Regrain time: 0.49s
Mean std transfer time: 0.04s
Lab Mean std transfer time: 0.22s
Saved to demo_images/scotland_display.png
Usage
from pathlib import Path
import cv2
from python_color_transfer.color_transfer import ColorTransfer
# Using demo images
input_image = 'demo_images/house.jpeg'
ref_image = 'demo_images/hats.png'
# input image and reference image
img_arr_in = cv2.imread(input_image)
img_arr_ref = cv2.imread(ref_image)
# Initialize the class
PT = ColorTransfer()
# Pdf transfer
img_arr_pdf_reg = PT.pdf_tranfer(img_arr_in=img_arr_in,
img_arr_ref=img_arr_ref,
regrain=True)
# Mean std transfer
img_arr_mt = PT.mean_std_transfer(img_arr_in=img_arr_in,
img_arr_ref=img_arr_ref)
# Lab mean transfer
img_arr_lt = PT.lab_transfer(img_arr_in=img_arr_in, img_arr_ref=img_arr_ref)
# Save the example results
img_name = Path(input_image).stem
for method, img in [('pdf-reg', img_arr_pdf_reg), ('mt', img_arr_mt),
('lt', img_arr_lt)]:
cv2.imwrite(f'{img_name}_{method}.jpg', img)
[^1]: Lab mean transfer: Color Transfer between Images by Erik Reinhard, Michael Ashikhmin, Bruce Gooch and Peter Shirley.
Open source's python implementation
[^2]: Pdf transfer: Automated colour grading using colour distribution transfer by F. Pitie , A. Kokaram and R. Dahyot.
Author's matlab implementation
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file python_color_transfer-0.1.2a0.tar.gz
.
File metadata
- Download URL: python_color_transfer-0.1.2a0.tar.gz
- Upload date:
- Size: 8.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.13 CPython/3.8.5 Darwin/20.1.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3f3c45e3369a0b9e40eaa155d492cf83bc497a28bacf0423acb7332ed694a4ef |
|
MD5 | b1c5c0b7e49b473d130dfdb41cc4cc89 |
|
BLAKE2b-256 | f2069361442f01730b368b7743db18f61c1b6b52a6855df7f1bba49b24164ec9 |
File details
Details for the file python_color_transfer-0.1.2a0-py3-none-any.whl
.
File metadata
- Download URL: python_color_transfer-0.1.2a0-py3-none-any.whl
- Upload date:
- Size: 8.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.13 CPython/3.8.5 Darwin/20.1.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 04ff213d72703ab6804cf81511f73d4754603342580dc987b5ea349d6bfaf539 |
|
MD5 | 665f7491ff50a662226597714183b191 |
|
BLAKE2b-256 | d559bb0bf2cbc0bbd6214c5ed429b1d46c56453fb755f9461333257de020f0d7 |