Skip to main content

DLT is an open-source python-native scalable data loading framework that does not require any devops efforts to run.

Project description

Quickstart Guide: Data Load Tool (DLT)

TL;DR: This guide shows you how to load a JSON document into Google BigQuery using DLT.

Please open a pull request here if there is something you can improve about this quickstart.

Grab the demo

Clone the example repository:

git clone https://github.com/scale-vector/dlt-quickstart-example.git

Enter the directory:

cd dlt-quickstart-example

Open the files in your favorite IDE / text editor:

  • data.json (i.e. the JSON document you will load)
  • credentials.json (i.e. contains the credentials to our demo Google BigQuery warehouse)
  • quickstart.py (i.e. the script that uses DLT)

Set up a virtual environment

Ensure you are using either Python 3.8 or 3.9:

python3 --version

Create a new virtual environment:

python3 -m venv ./env

Activate the virtual environment:

source ./env/bin/activate

Install DLT and support for the target data warehouse

Install DLT using pip:

pip3 install -U python-dlt

Install support for Google BigQuery:

pip3 install -U python-dlt[gcp]

Understanding the code

  1. Configure DLT

  2. Create a DLT pipeline

  3. Load the data from the JSON document

  4. Pass the data to the DLT pipeline

  5. Use DLT to load the data

Running the code

Run the script:

python3 quickstart.py

Inspect schema.yml that has been generated:

vim schema.yml

See results of querying the Google BigQuery table:

json_doc table

SELECT * FROM `{schema_prefix}_example.json_doc`
{  "name": "Ana",  "age": "30",  "id": "456",  "_dlt_load_id": "1654787700.406905",  "_dlt_id": "5b018c1ba3364279a0ca1a231fbd8d90"}
{  "name": "Bob",  "age": "30",  "id": "455",  "_dlt_load_id": "1654787700.406905",  "_dlt_id": "afc8506472a14a529bf3e6ebba3e0a9e"}

json_doc__children table

SELECT * FROM `{schema_prefix}_example.json_doc__children` LIMIT 1000
    # {"name": "Bill", "id": "625", "_dlt_parent_id": "5b018c1ba3364279a0ca1a231fbd8d90", "_dlt_list_idx": "0", "_dlt_root_id": "5b018c1ba3364279a0ca1a231fbd8d90",
    #   "_dlt_id": "7993452627a98814cc7091f2c51faf5c"}
    # {"name": "Bill", "id": "625", "_dlt_parent_id": "afc8506472a14a529bf3e6ebba3e0a9e", "_dlt_list_idx": "0", "_dlt_root_id": "afc8506472a14a529bf3e6ebba3e0a9e",
    #   "_dlt_id": "9a2fd144227e70e3aa09467e2358f934"}
    # {"name": "Dave", "id": "621", "_dlt_parent_id": "afc8506472a14a529bf3e6ebba3e0a9e", "_dlt_list_idx": "1", "_dlt_root_id": "afc8506472a14a529bf3e6ebba3e0a9e",
    #   "_dlt_id": "28002ed6792470ea8caf2d6b6393b4f9"}
    # {"name": "Elli", "id": "591", "_dlt_parent_id": "5b018c1ba3364279a0ca1a231fbd8d90", "_dlt_list_idx": "1", "_dlt_root_id": "5b018c1ba3364279a0ca1a231fbd8d90",
    #   "_dlt_id": "d18172353fba1a492c739a7789a786cf"}

Joining the two tables above on autogenerated keys (i.e. p._record_hash = c._parent_hash)

select p.name, p.age, p.id as parent_id,
            c.name as child_name, c.id as child_id, c._dlt_list_idx as child_order_in_list
        from `{schema_prefix}_example.json_doc` as p
        left join `{schema_prefix}_example.json_doc__children`  as c
            on p._dlt_id = c._dlt_parent_id
    # {  "name": "Ana",  "age": "30",  "parent_id": "456",  "child_name": "Bill",  "child_id": "625",  "child_order_in_list": "0"}
    # {  "name": "Ana",  "age": "30",  "parent_id": "456",  "child_name": "Elli",  "child_id": "591",  "child_order_in_list": "1"}
    # {  "name": "Bob",  "age": "30",  "parent_id": "455",  "child_name": "Bill",  "child_id": "625",  "child_order_in_list": "0"}
    # {  "name": "Bob",  "age": "30",  "parent_id": "455",  "child_name": "Dave",  "child_id": "621",  "child_order_in_list": "1"}

Next steps

  1. Replace data.json with data you want to explore

  2. Check that the inferred types are correct in schema.yml

  3. Set up your own Google BigQuery warehouse (and replace the credentials)

  4. Use this new clean staging layer as the starting point for a semantic layer / analytical model (e.g. using dbt)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-dlt-0.1.0rc12.tar.gz (409.5 kB view details)

Uploaded Source

Built Distribution

python_dlt-0.1.0rc12-py3-none-any.whl (471.5 kB view details)

Uploaded Python 3

File details

Details for the file python-dlt-0.1.0rc12.tar.gz.

File metadata

  • Download URL: python-dlt-0.1.0rc12.tar.gz
  • Upload date:
  • Size: 409.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.12 CPython/3.8.11 Linux/4.19.128-microsoft-standard

File hashes

Hashes for python-dlt-0.1.0rc12.tar.gz
Algorithm Hash digest
SHA256 973df3cf23c5132170686df4a81e5f8d5940610406766f6941e5e4b38a2bf154
MD5 c2fc57f15b9e8a7e13f4b21dd456ca32
BLAKE2b-256 7aa50109186ce41b6fc19ac60d933f3fab4f0902b4a3557f9f83377142460fa9

See more details on using hashes here.

File details

Details for the file python_dlt-0.1.0rc12-py3-none-any.whl.

File metadata

  • Download URL: python_dlt-0.1.0rc12-py3-none-any.whl
  • Upload date:
  • Size: 471.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.12 CPython/3.8.11 Linux/4.19.128-microsoft-standard

File hashes

Hashes for python_dlt-0.1.0rc12-py3-none-any.whl
Algorithm Hash digest
SHA256 3f081386040ddcb12540d8899a97ad34be5756c38bddb632a50323bd8132d567
MD5 a0252baf0f07fcccfe936787027e2230
BLAKE2b-256 6e1c9aaa43f362804ae7a0ae4938f4e14b546c2203a5b828e136beb5b66e78a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page