Skip to main content

DLT is an open-source python-native scalable data loading framework that does not require any devops efforts to run.

Project description

Quickstart Guide: Data Load Tool (DLT)

TL;DR: This guide shows you how to load a JSON document into Google BigQuery using DLT.

Please open a pull request here if there is something you can improve about this quickstart.

Grab the demo

Clone the example repository:

git clone https://github.com/scale-vector/dlt-quickstart-example.git

Enter the directory:

cd dlt-quickstart-example

Open the files in your favorite IDE / text editor:

  • data.json (i.e. the JSON document you will load)
  • credentials.json (i.e. contains the credentials to our demo Google BigQuery warehouse)
  • quickstart.py (i.e. the script that uses DLT)

Set up a virtual environment

Ensure you are using either Python 3.8 or 3.9:

python3 --version

Create a new virtual environment:

python3 -m venv ./env

Activate the virtual environment:

source ./env/bin/activate

Install DLT and support for the target data warehouse

Install DLT using pip:

pip3 install -U python-dlt

Install support for Google BigQuery:

pip3 install -U python-dlt[gcp]

Understanding the code

  1. Configure DLT

  2. Create a DLT pipeline

  3. Load the data from the JSON document

  4. Pass the data to the DLT pipeline

  5. Use DLT to load the data

Running the code

Run the script:

python3 quickstart.py

Inspect schema.yml that has been generated:

vim schema.yml

See results of querying the Google BigQuery table:

json_doc table

SELECT * FROM `{schema_prefix}_example.json_doc`
{  "name": "Ana",  "age": "30",  "id": "456",  "_dlt_load_id": "1654787700.406905",  "_dlt_id": "5b018c1ba3364279a0ca1a231fbd8d90"}
{  "name": "Bob",  "age": "30",  "id": "455",  "_dlt_load_id": "1654787700.406905",  "_dlt_id": "afc8506472a14a529bf3e6ebba3e0a9e"}

json_doc__children table

SELECT * FROM `{schema_prefix}_example.json_doc__children` LIMIT 1000
    # {"name": "Bill", "id": "625", "_dlt_parent_id": "5b018c1ba3364279a0ca1a231fbd8d90", "_dlt_list_idx": "0", "_dlt_root_id": "5b018c1ba3364279a0ca1a231fbd8d90",
    #   "_dlt_id": "7993452627a98814cc7091f2c51faf5c"}
    # {"name": "Bill", "id": "625", "_dlt_parent_id": "afc8506472a14a529bf3e6ebba3e0a9e", "_dlt_list_idx": "0", "_dlt_root_id": "afc8506472a14a529bf3e6ebba3e0a9e",
    #   "_dlt_id": "9a2fd144227e70e3aa09467e2358f934"}
    # {"name": "Dave", "id": "621", "_dlt_parent_id": "afc8506472a14a529bf3e6ebba3e0a9e", "_dlt_list_idx": "1", "_dlt_root_id": "afc8506472a14a529bf3e6ebba3e0a9e",
    #   "_dlt_id": "28002ed6792470ea8caf2d6b6393b4f9"}
    # {"name": "Elli", "id": "591", "_dlt_parent_id": "5b018c1ba3364279a0ca1a231fbd8d90", "_dlt_list_idx": "1", "_dlt_root_id": "5b018c1ba3364279a0ca1a231fbd8d90",
    #   "_dlt_id": "d18172353fba1a492c739a7789a786cf"}

Joining the two tables above on autogenerated keys (i.e. p._record_hash = c._parent_hash)

select p.name, p.age, p.id as parent_id,
            c.name as child_name, c.id as child_id, c._dlt_list_idx as child_order_in_list
        from `{schema_prefix}_example.json_doc` as p
        left join `{schema_prefix}_example.json_doc__children`  as c
            on p._dlt_id = c._dlt_parent_id
    # {  "name": "Ana",  "age": "30",  "parent_id": "456",  "child_name": "Bill",  "child_id": "625",  "child_order_in_list": "0"}
    # {  "name": "Ana",  "age": "30",  "parent_id": "456",  "child_name": "Elli",  "child_id": "591",  "child_order_in_list": "1"}
    # {  "name": "Bob",  "age": "30",  "parent_id": "455",  "child_name": "Bill",  "child_id": "625",  "child_order_in_list": "0"}
    # {  "name": "Bob",  "age": "30",  "parent_id": "455",  "child_name": "Dave",  "child_id": "621",  "child_order_in_list": "1"}

Next steps

  1. Replace data.json with data you want to explore

  2. Check that the inferred types are correct in schema.yml

  3. Set up your own Google BigQuery warehouse (and replace the credentials)

  4. Use this new clean staging layer as the starting point for a semantic layer / analytical model (e.g. using dbt)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-dlt-0.1.0rc13.tar.gz (410.5 kB view details)

Uploaded Source

Built Distribution

python_dlt-0.1.0rc13-py3-none-any.whl (472.8 kB view details)

Uploaded Python 3

File details

Details for the file python-dlt-0.1.0rc13.tar.gz.

File metadata

  • Download URL: python-dlt-0.1.0rc13.tar.gz
  • Upload date:
  • Size: 410.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.12 CPython/3.8.11 Linux/4.19.128-microsoft-standard

File hashes

Hashes for python-dlt-0.1.0rc13.tar.gz
Algorithm Hash digest
SHA256 1b3ec6248391f3fae3b6be97b93dc3b27c8be9923d47d6b8a851e7e2b7c1eda4
MD5 2583c56e6ce6b46b4b4d2e931c9d3bf2
BLAKE2b-256 da67f4f6d619f7579e7885f1d159f5358573353c91e69d2da95a28943f69c8ce

See more details on using hashes here.

File details

Details for the file python_dlt-0.1.0rc13-py3-none-any.whl.

File metadata

  • Download URL: python_dlt-0.1.0rc13-py3-none-any.whl
  • Upload date:
  • Size: 472.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.12 CPython/3.8.11 Linux/4.19.128-microsoft-standard

File hashes

Hashes for python_dlt-0.1.0rc13-py3-none-any.whl
Algorithm Hash digest
SHA256 330dd1d10d3aa37297353f4011d5d788012220c53e1f60026a1238daedb043a3
MD5 071f39d95ca4da9b3dccce2863d44a6c
BLAKE2b-256 988186411c1659625b8dc01ca7cfa95f3eace41ec4cdf130d9945e15d77691fc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page