Skip to main content

DLT is an open-source python-native scalable data loading framework that does not require any devops efforts to run.

Project description

Quickstart Guide: Data Load Tool (DLT)

TL;DR: This guide shows you how to load a JSON document into Google BigQuery using DLT.

Please open a pull request here if there is something you can improve about this quickstart.

Grab the demo

Clone the example repository:

git clone https://github.com/scale-vector/dlt-quickstart-example.git

Enter the directory:

cd dlt-quickstart-example

Open the files in your favorite IDE / text editor:

  • data.json (i.e. the JSON document you will load)
  • credentials.json (i.e. contains the credentials to our demo Google BigQuery warehouse)
  • quickstart.py (i.e. the script that uses DLT)

Set up a virtual environment

Ensure you are using either Python 3.8 or 3.9:

python3 --version

Create a new virtual environment:

python3 -m venv ./env

Activate the virtual environment:

source ./env/bin/activate

Install DLT and support for the target data warehouse

Install DLT using pip:

pip3 install -U python-dlt

Install support for Google BigQuery:

pip3 install -U python-dlt[gcp]

Understanding the code

  1. Configure DLT

  2. Create a DLT pipeline

  3. Load the data from the JSON document

  4. Pass the data to the DLT pipeline

  5. Use DLT to load the data

Running the code

Run the script:

python3 quickstart.py

Inspect schema.yml that has been generated:

vim schema.yml

See results of querying the Google BigQuery table:

json_doc table

SELECT * FROM `{schema_prefix}_example.json_doc`
{  "name": "Ana",  "age": "30",  "id": "456",  "_dlt_load_id": "1654787700.406905",  "_dlt_id": "5b018c1ba3364279a0ca1a231fbd8d90"}
{  "name": "Bob",  "age": "30",  "id": "455",  "_dlt_load_id": "1654787700.406905",  "_dlt_id": "afc8506472a14a529bf3e6ebba3e0a9e"}

json_doc__children table

SELECT * FROM `{schema_prefix}_example.json_doc__children` LIMIT 1000
    # {"name": "Bill", "id": "625", "_dlt_parent_id": "5b018c1ba3364279a0ca1a231fbd8d90", "_dlt_list_idx": "0", "_dlt_root_id": "5b018c1ba3364279a0ca1a231fbd8d90",
    #   "_dlt_id": "7993452627a98814cc7091f2c51faf5c"}
    # {"name": "Bill", "id": "625", "_dlt_parent_id": "afc8506472a14a529bf3e6ebba3e0a9e", "_dlt_list_idx": "0", "_dlt_root_id": "afc8506472a14a529bf3e6ebba3e0a9e",
    #   "_dlt_id": "9a2fd144227e70e3aa09467e2358f934"}
    # {"name": "Dave", "id": "621", "_dlt_parent_id": "afc8506472a14a529bf3e6ebba3e0a9e", "_dlt_list_idx": "1", "_dlt_root_id": "afc8506472a14a529bf3e6ebba3e0a9e",
    #   "_dlt_id": "28002ed6792470ea8caf2d6b6393b4f9"}
    # {"name": "Elli", "id": "591", "_dlt_parent_id": "5b018c1ba3364279a0ca1a231fbd8d90", "_dlt_list_idx": "1", "_dlt_root_id": "5b018c1ba3364279a0ca1a231fbd8d90",
    #   "_dlt_id": "d18172353fba1a492c739a7789a786cf"}

Joining the two tables above on autogenerated keys (i.e. p._record_hash = c._parent_hash)

select p.name, p.age, p.id as parent_id,
            c.name as child_name, c.id as child_id, c._dlt_list_idx as child_order_in_list
        from `{schema_prefix}_example.json_doc` as p
        left join `{schema_prefix}_example.json_doc__children`  as c
            on p._dlt_id = c._dlt_parent_id
    # {  "name": "Ana",  "age": "30",  "parent_id": "456",  "child_name": "Bill",  "child_id": "625",  "child_order_in_list": "0"}
    # {  "name": "Ana",  "age": "30",  "parent_id": "456",  "child_name": "Elli",  "child_id": "591",  "child_order_in_list": "1"}
    # {  "name": "Bob",  "age": "30",  "parent_id": "455",  "child_name": "Bill",  "child_id": "625",  "child_order_in_list": "0"}
    # {  "name": "Bob",  "age": "30",  "parent_id": "455",  "child_name": "Dave",  "child_id": "621",  "child_order_in_list": "1"}

Next steps

  1. Replace data.json with data you want to explore

  2. Check that the inferred types are correct in schema.yml

  3. Set up your own Google BigQuery warehouse (and replace the credentials)

  4. Use this new clean staging layer as the starting point for a semantic layer / analytical model (e.g. using dbt)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-dlt-0.1.0rc6.tar.gz (399.2 kB view details)

Uploaded Source

Built Distribution

python_dlt-0.1.0rc6-py3-none-any.whl (458.4 kB view details)

Uploaded Python 3

File details

Details for the file python-dlt-0.1.0rc6.tar.gz.

File metadata

  • Download URL: python-dlt-0.1.0rc6.tar.gz
  • Upload date:
  • Size: 399.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.12 CPython/3.8.11 Linux/4.19.128-microsoft-standard

File hashes

Hashes for python-dlt-0.1.0rc6.tar.gz
Algorithm Hash digest
SHA256 58ad0f9d76b159b08a99c3c0581a9bc83bb86fbca2f13d7cfce1706a6accede7
MD5 72cc407efe812e9f2ef1e8ca586183b2
BLAKE2b-256 5909703f6aaf2b4a669254d3255419379ee5b1cfbba13d3de3f90dbb80841732

See more details on using hashes here.

File details

Details for the file python_dlt-0.1.0rc6-py3-none-any.whl.

File metadata

  • Download URL: python_dlt-0.1.0rc6-py3-none-any.whl
  • Upload date:
  • Size: 458.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.12 CPython/3.8.11 Linux/4.19.128-microsoft-standard

File hashes

Hashes for python_dlt-0.1.0rc6-py3-none-any.whl
Algorithm Hash digest
SHA256 6b4e82f582e194bea16f274c46c8484f7affd600d3a985dbed6234808d71d314
MD5 bbbbb6fe1675d1216b7e6de21707472b
BLAKE2b-256 73d7640a80f126754c89e870808d2092e4fad760f9bf3be75666c513a2e9c9b9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page