Skip to main content

Easy Graph

Project description

EasyGraph

Copyright (C) <2020-2026> by DataNET Group, Fudan University


PyPI Version Python License Downloads

Introduction

The framework of EasyGraph is composed of four components: EasyGraph (Core), EasyHypergraph, EGGPU, and EasyGNN. Framework of EasyGraph.

EasyGraph is an open-source network analysis library primarily written in Python. It supports both undirected and directed networks and accommodates various network data formats. EasyGraph includes a comprehensive suite of network analysis algorithms such as community detection, structural hole spanner detection, network embedding, and motif detection. Additionally, it optimizes performance by implementing key components in C++ and utilizing multiprocessing.

👉 For more details, please refer to our documentation page.


EasyHypergraph is a comprehensive, computation-effective, and storage-saving hypergraph computation tool designed not only for in-depth hypergraph analysis but also for the growing field of hypergraph learning. It bridges the gap between EasyGraph and higher-order relationships. EasyHypergraph is developed as an integrated module within the EasyGraph framework, maintaining full compatibility with its core architecture.

👉 For more details, please refer to its documentation page.


EGGPU is a high-performance GPU-accelerated network analysis library that supports essential functions such as betweenness centrality, k-core centrality, and single-source shortest path,as well as structural hole metrics like constraint. Built on top of the EasyGraph library, EGGPU features an efficient system architecture and native CUDA implementation, while providing a user-friendly Python API and significant speedups for large-scale network analysis.

👉 For more details, please refer to its documentation page.

📢 EasyGraph News

📣 Media & Press

🚀 Releases & Milestones

  • [01-01-2026] EasyGraph v1.5.3 released (The Hypergraph Interchange Format (HIF) standard)
  • [11-23-2025] EasyGraph v1.5.2 released (LS algorithm for effective community detection)
  • [10-11-2025] EasyGraph v1.5.1 released (Python 3.14 supported)
  • [09-29-2025] 🎉 900K+ Downloads! Thanks to our amazing community!
  • [07-27-2025] EasyGraph v1.5 released (This version integrates the HWNN model and supports 11 representative network datasets)
  • [06-29-2025] 🎉 800K+ Downloads!
  • [11-22-2024] EasyGraph v1.4.1 released (Python 3.13 supported)
  • [09-20-2024] EasyGraph v1.4 released (GPU-powered functions for large network analysis)
  • [05-27-2024] EasyGraph v1.3 released (issues related to hypergraph analysis and visualization resolved)
  • [04-09-2024] EasyGraph v1.2 released (Python 3.12 supported)
  • [02-05-2024] EasyGraph v1.1 released (hypergraph analysis and learning for higher-order networks)
  • [08-17-2023] EasyGraph v1.0 released
  • [07-22-2020] EasyGraph first public release

📈 Publications

  • [05-30-2025] 🎉 Our paper "EasyHypergraph: an open-source software for fast and memory-saving analysis and learning of higher-order networks" was accepted by Humanities and Social Sciences Communications (Nature Portfolio)! [PDF]
  • [08-08-2023] 🎉 Our paper "EasyGraph: A Multifunctional, Cross-Platform, and Effective Library for Interdisciplinary Network Analysis" was accepted by Patterns (Cell Press)! [PDF]

Stargazers

Stars

Install

Supported Versions

3.8 <= Python <= 3.14 is required.

Installation With pip

    $ pip install --upgrade Python-EasyGraph

The conda package is no longer updated or maintained.

If you've previously installed EasyGraph with conda, please uninstall it with conda and reinstall with pip.

Build From Source

If prebuilt EasyGraph wheels are not supported for your platform (OS / CPU arch, check here), or you want to have GPU-based functions enabled, you can build it locally.

Prerequisites

  • CMake >= 3.23
  • A compiler that fully supports C++11
  • CUDA Toolkit 11.8 or later would be preferred (If need GPUs enabled)

Installation

On Linux

    git clone --recursive https://github.com/easy-graph/Easy-Graph
    export EASYGRAPH_ENABLE_GPU="TRUE"  # for users who want to enable GPUs
    pip install ./Easy-Graph

On Windows

    % For Windows users who want to enable GPU-based functions, %
    % you must execute the commands below in cmd but not PowerShell. %
    git clone --recursive https://github.com/easy-graph/Easy-Graph
    set EASYGRAPH_ENABLE_GPU=TRUE   % for users who want to enable GPUs %
    pip install ./Easy-Graph

On macOS

    # Since macOS doesn't support CUDA, we can't have GPUs enabled on macOS
    git clone --recursive https://github.com/easy-graph/Easy-Graph
    pip install ./Easy-Graph

Hint

EasyGraph uses 1.12.1 <= PyTorch < 2.0 for machine learning functions. Note that this does not prevent your from running non-machine learning functions normally, if there is no PyTorch in your environment. But you will receive some warnings which remind you some unavailable modules when they depend on it.

Simple Example

This example demonstrates the general usage of methods in EasyGraph.

  >>> import easygraph as eg
  >>> G = eg.Graph()
  >>> G.add_edges([(1,2), (2,3), (1,3), (3,4), (4,5), (3,5), (5,6)])
  >>> eg.pagerank(G)
  {1: 0.14272233049003707, 2: 0.14272233049003694, 3: 0.2685427766200994, 4: 0.14336430577918527, 5: 0.21634929087322705, 6: 0.0862989657474143}

This is a simple example for the detection of structural hole spanners using the HIS algorithm.

  >>> import easygraph as eg
  >>> G = eg.Graph()
  >>> G.add_edges([(1,2), (2,3), (1,3), (3,4), (4,5), (3,5), (5,6)])
  >>> _, _, H = eg.get_structural_holes_HIS(G, C=[frozenset([1,2,3]), frozenset([4,5,6])])
  >>> H # The structural hole score of each node. Note that node `4` is regarded as the most possible structural hole spanner.
  {1: {0: 0.703948974609375},
   2: {0: 0.703948974609375},
   3: {0: 1.2799804687499998},
   4: {0: 1.519976806640625},
   5: {0: 1.519976806640625},
   6: {0: 0.83595703125}
  }

Citation

If you use EasyGraph in a scientific publication, we kindly request that you cite the following paper:

  @article{gao2023easygraph,
      title={{EasyGraph: A Multifunctional, Cross-Platform, and Effective Library for Interdisciplinary Network Analysis}},
      author={Min Gao and Zheng Li and Ruichen Li and Chenhao Cui and Xinyuan Chen and Bodian Ye and Yupeng Li and Weiwei Gu and Qingyuan Gong and Xin Wang and Yang Chen},
      year={2023},
      journal={Patterns},
      volume={4},
      number={10},
      pages={100839},
  }

📢 If you notice anything unexpected, please open an issue and let us know. If you have any questions or require a specific feature, feel free to discuss them with us. We are motivated to constantly make EasyGraph even better and let more developers benefit!

Project details


Release history Release notifications | RSS feed

This version

1.6

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python_easygraph-1.6.tar.gz (429.1 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

python_easygraph-1.6-cp313-cp313-win_amd64.whl (793.2 kB view details)

Uploaded CPython 3.13Windows x86-64

python_easygraph-1.6-cp313-cp313-win32.whl (742.1 kB view details)

Uploaded CPython 3.13Windows x86

python_easygraph-1.6-cp313-cp313-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

python_easygraph-1.6-cp313-cp313-musllinux_1_2_i686.whl (2.1 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ i686

python_easygraph-1.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (888.7 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

python_easygraph-1.6-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (907.6 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ i686

python_easygraph-1.6-cp313-cp313-macosx_11_0_arm64.whl (787.3 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

python_easygraph-1.6-cp313-cp313-macosx_10_13_x86_64.whl (824.5 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

python_easygraph-1.6-cp312-cp312-win_amd64.whl (793.1 kB view details)

Uploaded CPython 3.12Windows x86-64

python_easygraph-1.6-cp312-cp312-win32.whl (742.1 kB view details)

Uploaded CPython 3.12Windows x86

python_easygraph-1.6-cp312-cp312-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

python_easygraph-1.6-cp312-cp312-musllinux_1_2_i686.whl (2.1 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ i686

python_easygraph-1.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (888.7 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

python_easygraph-1.6-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (907.7 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ i686

python_easygraph-1.6-cp312-cp312-macosx_11_0_arm64.whl (787.2 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

python_easygraph-1.6-cp312-cp312-macosx_10_13_x86_64.whl (824.4 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

python_easygraph-1.6-cp311-cp311-win_amd64.whl (790.8 kB view details)

Uploaded CPython 3.11Windows x86-64

python_easygraph-1.6-cp311-cp311-win32.whl (741.0 kB view details)

Uploaded CPython 3.11Windows x86

python_easygraph-1.6-cp311-cp311-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

python_easygraph-1.6-cp311-cp311-musllinux_1_2_i686.whl (2.1 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ i686

python_easygraph-1.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (888.5 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

python_easygraph-1.6-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (905.9 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686

python_easygraph-1.6-cp311-cp311-macosx_11_0_arm64.whl (785.9 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

python_easygraph-1.6-cp311-cp311-macosx_10_9_x86_64.whl (818.6 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

python_easygraph-1.6-cp310-cp310-win_amd64.whl (790.4 kB view details)

Uploaded CPython 3.10Windows x86-64

python_easygraph-1.6-cp310-cp310-win32.whl (740.2 kB view details)

Uploaded CPython 3.10Windows x86

python_easygraph-1.6-cp310-cp310-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

python_easygraph-1.6-cp310-cp310-musllinux_1_2_i686.whl (2.1 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ i686

python_easygraph-1.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (887.6 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

python_easygraph-1.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (905.6 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686

python_easygraph-1.6-cp310-cp310-macosx_11_0_arm64.whl (784.6 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

python_easygraph-1.6-cp310-cp310-macosx_10_9_x86_64.whl (817.4 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

python_easygraph-1.6-cp39-cp39-win_amd64.whl (789.9 kB view details)

Uploaded CPython 3.9Windows x86-64

python_easygraph-1.6-cp39-cp39-win32.whl (740.1 kB view details)

Uploaded CPython 3.9Windows x86

python_easygraph-1.6-cp39-cp39-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

python_easygraph-1.6-cp39-cp39-musllinux_1_2_i686.whl (2.1 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ i686

python_easygraph-1.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (888.2 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

python_easygraph-1.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (905.7 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686

python_easygraph-1.6-cp39-cp39-macosx_11_0_arm64.whl (784.7 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

python_easygraph-1.6-cp39-cp39-macosx_10_9_x86_64.whl (817.4 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

python_easygraph-1.6-cp38-cp38-win_amd64.whl (789.9 kB view details)

Uploaded CPython 3.8Windows x86-64

python_easygraph-1.6-cp38-cp38-win32.whl (740.0 kB view details)

Uploaded CPython 3.8Windows x86

python_easygraph-1.6-cp38-cp38-musllinux_1_2_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ x86-64

python_easygraph-1.6-cp38-cp38-musllinux_1_2_i686.whl (2.1 MB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ i686

python_easygraph-1.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (887.5 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

python_easygraph-1.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (905.2 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686

python_easygraph-1.6-cp38-cp38-macosx_11_0_arm64.whl (784.4 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

python_easygraph-1.6-cp38-cp38-macosx_10_9_x86_64.whl (816.9 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file python_easygraph-1.6.tar.gz.

File metadata

  • Download URL: python_easygraph-1.6.tar.gz
  • Upload date:
  • Size: 429.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for python_easygraph-1.6.tar.gz
Algorithm Hash digest
SHA256 ff11fb9b5863be8265e28342c8034aaab809615698d9f61fed097fafb2ed4d50
MD5 72db5232fb381357717851fd375f321a
BLAKE2b-256 44821efae92c5fae5e93d86249f695ca44f882c52c7f4f85386fcd6a1c72bc87

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 a2080d3796ccbcda203254e37e25a2ad3296d60eb7a339e421fffef50fd3cf50
MD5 a6cdd35f0245a916ff1acd4f971bc9de
BLAKE2b-256 47398d12aa98681c861b35728bd46513d921ce0c28a5f0be4e87e6f55da5c0e4

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp313-cp313-win32.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 10f35995d58bb94cd7461d4cc6ad4477fe8b7bb03bd54ca407f0d45ede7f859b
MD5 4d2aab68ddf505caad1636857a11220f
BLAKE2b-256 db4cfadeb3035341cf7100e96496b8062846293567b312a14a9edfca777e9479

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4b26e307e7587b09d9ae669a620ed94e052a49ee1e92a8a4c5df30c642b9a64c
MD5 94f3a22e368dd3f8811341c0f218c029
BLAKE2b-256 f68740ad49191abb6131888da75387281ee4c0e0e41fdb500d7e6547cc54f104

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 5c79086603770b8e88ea81f1e607af65b6edb49566592976076e34331b58c858
MD5 c38748d45078a2a0a41ccc5ea82127ee
BLAKE2b-256 87708510e43c7d8b528cbf02a1a88a4d00dd301bfba7f38ef15bb25cb50a0b33

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e84e46b357a346b50113bc60c46d31ef4de98d193eda2257a4a3088f7ce87daf
MD5 9d8887912f80f5b13bd6383f59e34aa6
BLAKE2b-256 c08945bb64242245548803b32d445c0e88aaf1a71d01a3caad533e9c48314d76

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ad6ff3dcdccd5725532602f0ac7815553d9f85aacd7ca7aaee34afdc07381f5a
MD5 72c191f2c7c17fed89a69b47c1933d82
BLAKE2b-256 8d41c1930d67ae20e84d34e5d4848fa50d43b906df64ea056f325a018f39732c

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 beb9fe3a48008a4dd163c838b72795f45e069e080576c53d545948e24430a117
MD5 336606810ac12b0eab9cfff1676a884e
BLAKE2b-256 fd8ac41c2c24d1e88b0e0b9a84401275151007110107fdc302060f9868518226

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 858918cc3a2593b2ed4785185960bcc14b6f291eaa3cf3b5a41f6a70d9802b90
MD5 98bbf0c986a2d800e706d4127252c978
BLAKE2b-256 effd7c6ef78f705294d35ac3a99ea12b853e2b707b2ab11cb829b8ef57261a8b

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4f517cc2105b1673c25cd831621de3fe80febbb3249747309540b9111ae32446
MD5 cee01c16c2e0bd3de913930833b15803
BLAKE2b-256 2cbc930e0b3fde8d99d0409c7256c614796762ef3df0179c606eddf914aeebf7

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 96622e220417737da229f5662d3bc25fef82815a754ad81b0da10c0dd56c402e
MD5 b402f449937f28af8a48e6cefa6e9a89
BLAKE2b-256 90837affe0c947748690b369f7f342ea200dc17c7ef45ea44adbc8366dddeb29

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0920051437a6c652b4907939c174cec1c4b95705e025609bdb7f7e981084cb20
MD5 987240588b809a1d9dfffd9289ace1c7
BLAKE2b-256 514b6eb7b4e2e8cc822ef3337c32dbfd775a5026dd58ba70a382c12de312bbc9

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 0e35629347fe5d369ea087a05a994b895bc26ca43e30344ce28a3b1ddef00b75
MD5 5b8096c3959431f9b2589e1256e8f7ff
BLAKE2b-256 c5ddccc5a90610e3f14eb6556bfc92e03e821a3faa1bdf3ea1937155978923d9

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9591a0514fee441204f45a98696d5f54c4747eb461ab3cff94030a9c961b35e0
MD5 0850b1927d704ef67227c36fd92a9bf8
BLAKE2b-256 c73d81e1353ddee7e9d6e682ede3458319b8f4ff06819effbdc512b86d65a8bb

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 235c8c7eabed57a2a068f665e1820e972799115167fcb3604462e2e3a9551f14
MD5 2eff13cbc8503aabd54f6f695dd686b6
BLAKE2b-256 5f1cfa881481fbe7de7ce16ec38f67c6aebd844b3de968ba54c9d4ad5786104a

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4f4467c2c2e2ffe74ebf5ec33c188d211e6e08d636043f28a2c7f312858df54d
MD5 138eedc91321a165bf492175c8fbd2cb
BLAKE2b-256 7f34eb8b0422fb73ba599543762984fd6c064dcaee106b5cde54432358c03112

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6156b020fff5bf3ebbc118f45442eff4161e538b92c000245331c6621f3bfc68
MD5 f75a055f2c3ff0deb42a4b2b39292fa2
BLAKE2b-256 e4ba773b4a980f08b634c8f20e91841bc9401ea5382deac0c90ef182346c9df1

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2237c381b10abc0ab309b6ca2cbaee11ccac396e1094719ad6e0629bf7e72e30
MD5 fb3c820c2cbd10ade524ed25d138fcdf
BLAKE2b-256 5d845bcd786588f66058b2046ab6c98afaa177104b95996757ba3309a3eaa1d2

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 abd9a3076f221fee63011a8f12a678b02abb827f46059640c7da894585e97016
MD5 0590d9641ba6de0810a24a33fcc274d7
BLAKE2b-256 5aaaa0a64336d73a2e570c071058935ddcd8fc37bb7089aa0f74fedb5319a63d

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2dfc915bea61bd76be9e9229e873835bd3fabb3d7706e5268a13953e2bd5db0e
MD5 0c49349a167e3cc62c69299db6f68af3
BLAKE2b-256 6f86fc770213f26bd6faa78d192190a8d0bce835016441872c2c2008a49c77fd

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 d49524499b264f6c06b6cccedb6886f0c5162d92811603a6709492916bde6688
MD5 72c557d724b31716c50794c10fde190e
BLAKE2b-256 da62d6e20bb78b953e289d2c23e54231779facd07e9ceaa4ab68dc9d084acae8

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d28ce82f3cd64511e038d329004e742817f2819b7f3bf074a0bff167ca8800a0
MD5 6bfa1cbc65f81036d344d24fb1e53561
BLAKE2b-256 e00e550351375eee7b9c907e95aeede833e3e89b2fd6003c75448d83081bdec2

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a4606be6cd36b56f3a844bf6002756073850e7b505f1ffd6d5ab7489822a8991
MD5 c77266e6feb622eb10706dbf18196030
BLAKE2b-256 fa0c92ef2c975d87ef480814a0d46ca21856eda9d9956ef8b10ab7aa7a4b0b4d

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b3ddd05f818ce4ba21d7b347eefea208fb0b9a1f7934e15418c43b100815dc5f
MD5 b52db2f926d9d1b8b2edd38b00cb3ddb
BLAKE2b-256 ef8d4b777e65b36369ddc252b60bc065caedd9330e0659172be4a5312496b186

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aff3ddf9dde9b0e785b9fa7af77d63ddfeafc8b2a35dceb8b441c9da3018ef15
MD5 4f30cdb52fc5c038f6d5e078a8279beb
BLAKE2b-256 78c6dae2a7524e49e91afc21a2e09c54b10d02e7e7f9b1ea468dfe63a872e6fc

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4ff7c7bef40808835a7339e63d4aeb34a855793afc189e965263784112514579
MD5 438e7c82838d0b20b89a632de4897db1
BLAKE2b-256 a0c6f2b992a831b2456b48c2756a8a2c2d8d57576819c22a46e9099faa58eb6e

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 1b23dd7ed5b7fefd7e0c07594fddfd262f1e8cb7898d9e0b9f2d440133b1e5bb
MD5 66f931a640b437852c6bcb8eff2828b7
BLAKE2b-256 44c061571cd5d8abbc59ba5981e428e218f64aa48f0e3ce8469005452c974015

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 abf67ec0a9466f8c451a634277d62d503aa40921f7604a0152cc53b59e7107a4
MD5 17ec8ec4820579bf9267c9f9aeb84327
BLAKE2b-256 5334568584e3513f3803fb9a6706aea2ed3a0da55775c15dc9fd286ace23dfa1

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 49843d2a77710bdc4801ed4088a6d9be9c44d5305d795448acb12a9a6e5be849
MD5 38bca970bb44bc331d39d1b7c540f067
BLAKE2b-256 3560e28c09e82d91bb0afe5828df3096aae1c51b9a23b05692c88df6886235d9

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 563fa547276dacf2f2c084701dee70a1c16d75d8c8b9ae0e61e9fae3658d1a35
MD5 6d58d8c73ab9853c706739234a53dd82
BLAKE2b-256 e17f31e9f459c6ab7df36210938f72b19698a2f265ac48648f97f977163b629b

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 59d7d16cac9612724569f8726b0c4a1467e73ea250ef908236bdc21d07933fc1
MD5 bb7cf7a7bd10dced879354bac524b3b2
BLAKE2b-256 739b1b62a78c4077ae424dd057ca0a8d1340a7e0dedc780f6d7ef34fb553351e

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d8ed6d131dda8119381ddfabeecdd1ee182efcb3ce85e803333dea82fd909829
MD5 daeaf6a1d41792ab0197bf46f4d28a35
BLAKE2b-256 08198f19605a771b6bb17af783a5c9f31a22085bc369b0724806e708c2ac6147

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1eaae00be2cc33e35958a865f6ce6fade680f5d7ff67fb67a3d1485002d7e8f0
MD5 e91f602900c388c30beb5315177f8d3b
BLAKE2b-256 56d25035c00001256dee581dd1d5ff7ba9bcddff2d3d3b85688dc31a85ed9af5

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5a190286fb64571c1342287ea83daf2d47739405891f9145baaf1423ffdbac4a
MD5 88f82643a021b7c32a81b7f7eaf59d1d
BLAKE2b-256 73a9bdc8b73157a8a3e05bacd4de637b7d027a24f568f38caedebe7703ed0115

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp39-cp39-win32.whl.

File metadata

  • Download URL: python_easygraph-1.6-cp39-cp39-win32.whl
  • Upload date:
  • Size: 740.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for python_easygraph-1.6-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 86a69793aad746819683f5d95426cb609327d9d6615e2eabaac472b33c2408c4
MD5 98160f73924c1192de963f1aff0b243f
BLAKE2b-256 2016003017bf1ac4e7b836cdb817184b8998417e425a2166be84b9c409e0f9ba

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 46ec6bad4cd76eccc7dd9d3bbf67f7364e5d3236c68ca2caec9199b257e4310a
MD5 bf6c9669bd31f19ea30338dbf2b68fce
BLAKE2b-256 faa307ec29672135f4df62a8178fab7d9f53b5534a4bfc03b7217ebd3f38614c

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b4d982d8927c6aea42762eabfb135966694c2628de5e9a718001302917d95c3d
MD5 692460f0829ecab5dde7d8a68226f503
BLAKE2b-256 a506fc6d9d4e78a4e908ccfc76271220a31955bcde45471a4b3076080ce6776f

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8672698a13644602d6ffbfbe52b689655ee83360df6b491354ffda5bc8d4341a
MD5 6f09073caf6ae36765de3c877a4a58dc
BLAKE2b-256 3d2a3c26eefe9b5aba0f77b0b52d7777940ac73203becee7e73ab325c97ede19

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 af87dfca7c90bd393837e4f7a48875fef3f5e6e3b6c8ca7ae5cd942cce4e46a8
MD5 9adf9d36bf3b4f0d4947c06cda465fd7
BLAKE2b-256 affa981179f5dfb8b99152a4f6b9ae808418ebd1c687d0dc8466086404c23698

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9139ba0a13b10d98c314dd9a5402468d755edd91b02b1c1d3921c1b14a323ba3
MD5 ddc2a5f76b0ae50377587bf2500233a5
BLAKE2b-256 c5599a5469e43bbea77a97101063e1a3cb40c47d9a02e124110526fb55d36c69

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e4c9906de7ffb528ac107b37b4414c46c23c40fdb0f80a9360529b0c79b9f4c0
MD5 6dd090e354bce414195a9aa04a2258c8
BLAKE2b-256 3830848d52e05ae4bf1d17a2ab14239e84d02311d15262a911a05af0eb2c5d2f

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3039158f00d25846a1360640a4b1e1254a58bf9a7767602c54c9e3f0eac20921
MD5 7244fb52a81e630e4f95764471acdf8a
BLAKE2b-256 2332d90c246649d43c4ae21ec20036f6edde4da7d3fd3a599f30f8b634f19836

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp38-cp38-win32.whl.

File metadata

  • Download URL: python_easygraph-1.6-cp38-cp38-win32.whl
  • Upload date:
  • Size: 740.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for python_easygraph-1.6-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 63f1c1ffcc67a389da68751fb91802460d30be28e0af2756cc84b8f2f3be07e2
MD5 194526523b9b4f644832446ea021d582
BLAKE2b-256 c8c3fe5629404232a15ffe532f0d8fa31dfc81a35b158da4eefa686d7a378489

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9b0eb7674ab2adecbb3d3ddf61b9ff495e07b216b13400f25356b8dd32ffaa1d
MD5 f9ecb2d3a90ee0ef9d5bb3e268bfb588
BLAKE2b-256 2be0d0d0cf6655a40c2cd35c3f4e24f36a59b7325013168408da8ece07281187

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 7e0658339105ecd5658e2c847829f2f08dd62ad7665408e1d8c20485ae8f9d04
MD5 900c388e952a9b8144d91f866056601b
BLAKE2b-256 52d26c83d801d224eaa714315e3891915ae516c9b60cf47a34476fef39adc6d9

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 28d802c391195caae43c1cfa72800bc4010cda16ab1c42283190255177d0daed
MD5 4d8a53691b11d4d3b2c566ac76d4aa8a
BLAKE2b-256 ca4f007607572a050d1c661447155c4a6d4ad3f216136d6c1bfcc927244a29ea

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 698060d3f7477e251437a6cedee2f9d3c054fb61c7db16f216042edc9439c7c0
MD5 335ebfb92dbef7066217d119bf8df539
BLAKE2b-256 4b287ca2db2bce2deb1d43fa99204306e80132697c293c9dffa71664ecb29ea7

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 07521f3c62bc1d5132c6f84f15dcfaf4439d8fc6d47621a975be714a3e6f2ad4
MD5 0946662179f051a211e703aba128bec0
BLAKE2b-256 766ee6ecbc67ecb01e2d02413fee250dd5e3ca48bc6e5490229b13044bed86e2

See more details on using hashes here.

File details

Details for the file python_easygraph-1.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for python_easygraph-1.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cc7aee74791c06280372aa17d147526833052754617524e7c7c6143e51defc4c
MD5 794ec96dc486a6b03f23ce42915628b6
BLAKE2b-256 e88ad6dd46688d0e5d79f94f4b813d035eb391c4d13b3a337482a12034b0cb9c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page