Skip to main content

Easiest and fastest way to 1B synthetic tokens

Project description

fastdata

fastdata is a minimal library for generating synthetic data for training deep learning models. For example, below is how you can generate a dataset to train a language model to translate from English to Spanish.

First you need to define the structure of the data you want to generate. claudette, which is the library that fastdata uses to generate data, requires you to define the schema of the data you want to generate.

from fastcore.utils import *
class Translation():
    "Translation from an English phrase to a Spanish phrase"
    def __init__(self, english: str, spanish: str): store_attr()
    def __repr__(self): return f"{self.english} ➡ *{self.spanish}*"

Translation("Hello, how are you today?", "Hola, ¿cómo estás hoy?")
Hello, how are you today? ➡ *Hola, ¿cómo estás hoy?*

Next, you need to define the prompt that will be used to generate the data and any inputs you want to pass to the prompt.

prompt_template = """\
Generate English and Spanish translations on the following topic:
<topic>{topic}</topic>
"""

inputs = [{"topic": "Otters are cute"}, {"topic": "I love programming"}]

Finally, we can generate some data with fastdata.

[!NOTE]

We only support Anthropic models at the moment. Therefore, make sure you have an API key for the model you want to use and the proper environment variables set or pass the api key to the FastData class FastData(api_key="sk-ant-api03-...").

from fastdata.core import FastData
fast_data = FastData(model="claude-3-haiku-20240307")
translations = fast_data.generate(
    prompt_template=prompt_template,
    inputs=inputs,
    schema=Translation,
)
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00,  1.57it/s]
from IPython.display import Markdown
Markdown("\n".join(f'- {t}' for t in translations))
  • I love programming ➡ Me encanta la programación
  • Otters are cute ➡ Las nutrias son lindas

Installation

Install latest from the GitHub repository:

$ pip install git+https://github.com/AnswerDotAI/fastdata.git

or from pypi

$ pip install python-fastdata

If you’d like to see how best to generate data with fastdata, check out our blog post here and some of the examples in the examples directory.

Developer Guide

If you are new to using nbdev here are some useful pointers to get you started.

Install fastdata in Development mode

# make sure fastdata package is installed in development mode
$ pip install -e .

# make changes under nbs/ directory
# ...

# compile to have changes apply to fastdata
$ nbdev_prepare

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python_fastdata-0.0.4.tar.gz (11.2 kB view details)

Uploaded Source

Built Distribution

python_fastdata-0.0.4-py3-none-any.whl (10.5 kB view details)

Uploaded Python 3

File details

Details for the file python_fastdata-0.0.4.tar.gz.

File metadata

  • Download URL: python_fastdata-0.0.4.tar.gz
  • Upload date:
  • Size: 11.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for python_fastdata-0.0.4.tar.gz
Algorithm Hash digest
SHA256 fa40b1479ba7555377e3c78fc3a0ee4e7ca19c3d83b094314eec04d2f35b599b
MD5 1244c886607e07fcedea207c443e5f72
BLAKE2b-256 693bc5802b1e2ec584cbd0ba6a2b404d05e875ef215c183ae0a42a566a3d4bd6

See more details on using hashes here.

File details

Details for the file python_fastdata-0.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for python_fastdata-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 647acfcea0543c0d1325e2dc1bb60691d4151eda1bc3973a1d3aee615b5a3903
MD5 d6cdf4b36922b10261285873eee3319b
BLAKE2b-256 2d051354a4081d3a93f677f6c965fe9e5a17876899a6f48569374c865ba4860d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page