Skip to main content

A workflow engine based on Kopf

Project description

Fastflow

Code style: black

Deploy to Kubernetes with helm chart

kubectl create ns fastflow
helm -n fastflow upgrade --install fastflow chart

Run examples

Apply examples

kubectl -n fastflow create -f examples/01-helloworld/workflow.yaml
kubectl -n fastflow create -f examples/02-digraph/workflow.yaml

Inspect results

kubectl -n fastflow get workflows
kubectl -n fastflow get tasks -l workflow=helloworld

Developer setup

For developing the fastflow project

Generate CRDS

python3 generate_crds.py

Create CRDS

Can also be installed by applying the helm chart

kubectl create -f chart/crds/kopfpeering-crd.yaml
find chart/crds/generated -name *.yaml -exec kubectl create -f '{}' \;

Delete CRDS

find chart/crds/generated -name *.yaml -exec kubectl delete -f '{}' \;

Virtual environment

python3 -m venv ~/venvs/fastflow
. ~/venvs/fastflow/bin/activate
python3 -m pip install --upgrade pip
python3 -m pip install -e .

Run from outside cluster

Will use kubectl config for cluster access. Greate for development, and can run with debugger attached.

Prepare namespace

kubectl create ns fastflow-dev
kubectl -n fastflow-dev apply -f - << EOYML
apiVersion: kopf.dev/v1
kind: KopfPeering
metadata:
  name: default
EOYML

Run as module (useful for debugger)

python3 -m fastflow \
--namespace fastflow-dev \
--dev

Run from cli

fastflow --namespace fastflow-dev --dev

Run Tests

Install test-requirements

python3 -m pip install -e . -r test-requirements.txt

Prepare namespace

kubectl create ns fastflow-test
kubectl -n fastflow-test apply -f test/kopf-test-peering.yaml

Run the tests as module

python3 -m pytest --color=yes

Run the tests from cli

pytest --color=yes

Building whl package and Docker image

Cleanup old packages

rm -Rf dist

Build package

python3 -m pip install build
python3 -m build

Build Docker image

eval $(minikube -p minikube docker-env)
DOCKER_BUILDKIT=1 docker build -t fastflow .

Use helm to run the image in Kubernetes

helm -n fastflow-dev upgrade --install --set imageOverride=fastflow fastflow chart

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python_fastflow-0.3.0.tar.gz (28.0 kB view details)

Uploaded Source

Built Distribution

python_fastflow-0.3.0-py3-none-any.whl (16.4 kB view details)

Uploaded Python 3

File details

Details for the file python_fastflow-0.3.0.tar.gz.

File metadata

  • Download URL: python_fastflow-0.3.0.tar.gz
  • Upload date:
  • Size: 28.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for python_fastflow-0.3.0.tar.gz
Algorithm Hash digest
SHA256 034d7b8bc3e5dcfddedc3c7aeafa9159b352431a8bb3070f67adddc5ce55b1a7
MD5 c27db43fef9c59b7768e0e0503e8acfe
BLAKE2b-256 fce56cf08480a04d2e55b8d625dddc573a17a2e5a796c45efc60bf86b5cce545

See more details on using hashes here.

File details

Details for the file python_fastflow-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for python_fastflow-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 17dd4f558b3c557f4d2c38917fa2d7780a5a3b8d1f216317f42339611b3c479c
MD5 0314aadaaf5a60b1afb23aed1362fb2c
BLAKE2b-256 ead249aac27eb5f8d64dce13217daf002e80372abcb657de4357ec41a7906663

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page