A workflow engine based on Kopf
Project description
Fastflow
Deploy to Kubernetes with helm chart
kubectl create ns fastflow
helm -n fastflow upgrade --install fastflow chart
To install in more namespasces, create the namespace and run the helm command again, this time with the
--skip-crds
flag.
kubectl create ns fastflow-dev
helm -n fastflow-dev upgrade --install fastflow chart --skip-crds
Run examples
Apply examples
kubectl -n fastflow create -f examples/01-helloworld/workflow.yaml
kubectl -n fastflow create -f examples/02-digraph/workflow.yaml
Inspect results
kubectl -n fastflow get workflows
kubectl -n fastflow get tasks -l workflow=helloworld
Developer setup
For developing the fastflow project
Generate CRDS
python3 generate_crds.py
Create CRDS
Can also be installed by applying the helm chart
kubectl create -f chart/crds/kopfpeering-crd.yaml
find chart/crds/generated -name *.yaml -exec kubectl create -f '{}' \;
Delete CRDS
find chart/crds/generated -name *.yaml -exec kubectl delete -f '{}' \;
Virtual environment
python3 -m venv ~/venvs/fastflow
. ~/venvs/fastflow/bin/activate
python3 -m pip install --upgrade pip
python3 -m pip install -e .
Run from outside cluster
Will use kubectl config for cluster access. Greate for development, and can run with debugger attached.
Prepare namespace
kubectl create ns fastflow-dev
kubectl -n fastflow-dev apply -f - << EOYML
apiVersion: kopf.dev/v1
kind: KopfPeering
metadata:
name: default
EOYML
Run as module (useful for debugger)
python3 -m fastflow \
--namespace fastflow-dev \
--dev
Run from cli
fastflow --namespace fastflow-dev --dev
Run Tests
Install test-requirements
python3 -m pip install -e . -r test-requirements.txt
Prepare namespace
kubectl create ns fastflow-test
kubectl -n fastflow-test apply -f test/kopf-test-peering.yaml
Run the tests as module
python3 -m pytest --color=yes
Run the tests from cli
pytest --color=yes
Building whl package and Docker image
Cleanup old packages
rm -Rf dist
Build package
python3 -m pip install build
python3 -m build
Build Docker image using minikube
eval $(minikube -p minikube docker-env)
DOCKER_BUILDKIT=1 docker build -t fastflow .
Use helm to run the image in Kubernetes, by specifying the image tag we just created
helm -n fastflow-dev upgrade --install --set imageOverride=fastflow fastflow chart
Examples using custom Task implementations
The Operator needs to be able to load the custom code. Here is an example using the examples/03-farmlife
example
workflow. This workflow uses custom tasks implemented in examples/03-farmlife/tasks-impl/farmlife.py
.
Run the operator locally
Run the operator so it can load the custom code
fastflow --dev --namespace fastflow-dev examples/03-farmlife/tasks-impl/farmlife.py
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file python_fastflow-0.4.0.tar.gz
.
File metadata
- Download URL: python_fastflow-0.4.0.tar.gz
- Upload date:
- Size: 31.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 35cd26f86afe7a226a19c606b440db1130d6d7566028ba7f782b3ef35b68746d |
|
MD5 | c8223e325abc95e3645d7e12dbf1b889 |
|
BLAKE2b-256 | 8b09a0901843bb9a4351572a4292da31dc67b1382f5e7dd6c97a6b5e35b4fbf1 |
File details
Details for the file python_fastflow-0.4.0-py3-none-any.whl
.
File metadata
- Download URL: python_fastflow-0.4.0-py3-none-any.whl
- Upload date:
- Size: 17.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 534a318ed585a0569003a4841dfeeae61c3a272aafa45f0e88268590ea8d21d6 |
|
MD5 | 69683b983a1fe7aefb92abca0b0f80b4 |
|
BLAKE2b-256 | c80d85c0b52f7e4897c9ea55d5614e91b73ee393c14b25eda052a6236a4b4e9a |