Skip to main content

Interpolation of geographic tiepoints in Python

Project description

python-geotiepoints

Build Status Coverage Status

Python-geotiepoints is a python module that interpolates (and extrapolates if needed) geographical tiepoints into a larger geographical grid. This is usefull when the full resolution lon/lat grid is needed while only a lower resolution grid of tiepoints was provided.

Some helper functions are provided to accomodate for satellite data, but the package should be generic enough to be used for any kind of data.

In addition we have added a fast multilinear interpolation of regular gridded data using Cython.

Adam & Martin May 2017, Norrköping, Sweden

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-geotiepoints-1.5.1.tar.gz (7.7 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

python_geotiepoints-1.5.1-cp310-cp310-win_amd64.whl (380.7 kB view details)

Uploaded CPython 3.10Windows x86-64

python_geotiepoints-1.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

python_geotiepoints-1.5.1-cp310-cp310-macosx_10_15_x86_64.whl (465.6 kB view details)

Uploaded CPython 3.10macOS 10.15+ x86-64

python_geotiepoints-1.5.1-cp39-cp39-win_amd64.whl (384.6 kB view details)

Uploaded CPython 3.9Windows x86-64

python_geotiepoints-1.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

python_geotiepoints-1.5.1-cp39-cp39-macosx_10_15_x86_64.whl (462.6 kB view details)

Uploaded CPython 3.9macOS 10.15+ x86-64

python_geotiepoints-1.5.1-cp38-cp38-win_amd64.whl (384.7 kB view details)

Uploaded CPython 3.8Windows x86-64

python_geotiepoints-1.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

python_geotiepoints-1.5.1-cp38-cp38-macosx_10_15_x86_64.whl (452.4 kB view details)

Uploaded CPython 3.8macOS 10.15+ x86-64

python_geotiepoints-1.5.1-cp37-cp37m-win_amd64.whl (378.2 kB view details)

Uploaded CPython 3.7mWindows x86-64

python_geotiepoints-1.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

python_geotiepoints-1.5.1-cp37-cp37m-macosx_10_15_x86_64.whl (452.2 kB view details)

Uploaded CPython 3.7mmacOS 10.15+ x86-64

File details

Details for the file python-geotiepoints-1.5.1.tar.gz.

File metadata

  • Download URL: python-geotiepoints-1.5.1.tar.gz
  • Upload date:
  • Size: 7.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for python-geotiepoints-1.5.1.tar.gz
Algorithm Hash digest
SHA256 ee4f7c196be0d689f09d8187565c409fc1f0c1e104dc3df2fe99ff5f51b8c598
MD5 0f69b20f1498bf85912216f08de15a6c
BLAKE2b-256 459aafe855fc6024895de8153480e0e031b54967c97be105988f8a76f7ef36f1

See more details on using hashes here.

File details

Details for the file python_geotiepoints-1.5.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for python_geotiepoints-1.5.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 95dbab0b96cb08372b71eb369ba1e74ca8f9ea516777f65cee32709835240a41
MD5 3ec3dc87003bc42ff9929b6232eb430e
BLAKE2b-256 b220d367c456aea8251927ca2dc80fc5b51ef5137bb1eaad9b9647a4ed190452

See more details on using hashes here.

File details

Details for the file python_geotiepoints-1.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_geotiepoints-1.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1db596aff22e68a48b0aec8e0b8f838da2bd76fd3d2eaa0d34086b27278ba01c
MD5 86e295fddadf987909b75c16bc96a378
BLAKE2b-256 d770c7d824469d2668de4a3de8af34c17210e7c318b9e50b698ecc79c5d669d0

See more details on using hashes here.

File details

Details for the file python_geotiepoints-1.5.1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for python_geotiepoints-1.5.1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0c26457a4db4bb090cedd8ddabf39c7d02b4f7f7f04c9a136d9f6852c14fcbb2
MD5 536b74702ec10be2366488ac4c84580e
BLAKE2b-256 5b450b45ca2eaaf948d35d72a73edc23eabcf1d2adf51536cfb3e41bc3881a70

See more details on using hashes here.

File details

Details for the file python_geotiepoints-1.5.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for python_geotiepoints-1.5.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 97a1fdd13dc30c92371a2c55094bcbc53132b4f6c6c09627e4cfab1a60dbdfce
MD5 aa2f3262bfadfa8f6c3d3b2bbfd4f297
BLAKE2b-256 7775f7448aed691b89a88de62ff22c476f892b1d03774d933fbb474bea24c8ce

See more details on using hashes here.

File details

Details for the file python_geotiepoints-1.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_geotiepoints-1.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94c66cf948097af5f0b461d7be74ed4332e9c45337f82ad9ad76e954d8c0178a
MD5 4fd9486a73791ed4c9ad10ff29d7a3df
BLAKE2b-256 3d4631748f562130ad9269a7401d3b5264f5410547dc7eff9010c6b58aec448d

See more details on using hashes here.

File details

Details for the file python_geotiepoints-1.5.1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for python_geotiepoints-1.5.1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4041573b231ddeeced3a8b9b4b1e0ff6c107a6750adfd7a4c334addd39495772
MD5 7e970c3ce793e22f21acd71083b9389e
BLAKE2b-256 09b3b1a302e1b57661ec47fa722f6e621133b66ed787ea701f67b633781364e2

See more details on using hashes here.

File details

Details for the file python_geotiepoints-1.5.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for python_geotiepoints-1.5.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0fe49d7acb795f524aa31c7acca8993427a55e61226676e189ac2e3b36da2c3e
MD5 de87c939d9a6feb99818f2b42217fd2a
BLAKE2b-256 0c253e0f8e03def500aa4b41a09248dfbeb700b7a18c4d80a1179c6eca47be43

See more details on using hashes here.

File details

Details for the file python_geotiepoints-1.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_geotiepoints-1.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9cfe9bb8d5a8f04f8cd0699b318cfaad9b422ea56d1e7302959f378495692bd7
MD5 ceceff195fcbe265758082d109bea89b
BLAKE2b-256 f224ca9bb888f593da5e0ef3f49aa24a885b0c3bbb979b2c27ce9ac2442be53b

See more details on using hashes here.

File details

Details for the file python_geotiepoints-1.5.1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for python_geotiepoints-1.5.1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5736c2ccd50ab67dfd825fac225c49bf40af937736b98f662acba73e2c9df4d7
MD5 3dcf1cd854269357c224ee42e621f322
BLAKE2b-256 791a92ced24ce5858b33dda768efe0b549395c203f094b820d2416512e0b7201

See more details on using hashes here.

File details

Details for the file python_geotiepoints-1.5.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for python_geotiepoints-1.5.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1718b85d0f9f20b899454d426447664c3783800c8255be4db3c43fd8da4ffc41
MD5 99d1450fb95dcc3093b8ea1c47e6da29
BLAKE2b-256 df9f397e728d21734b246c9f8d543c1952f9179dcbcf833d10c180dfd6ca4b1e

See more details on using hashes here.

File details

Details for the file python_geotiepoints-1.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_geotiepoints-1.5.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f04dad8fe74d833c19580b760fa07998b9b4188505a41ce705f8cfbd46d5b93f
MD5 39fdbeabfafd8a326c45002e4de56bcb
BLAKE2b-256 22b632c095f6352fdc8a1b1d08d8e43ed9d5068f62afb8b75ede88fe98afafda

See more details on using hashes here.

File details

Details for the file python_geotiepoints-1.5.1-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for python_geotiepoints-1.5.1-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0b4151dfef5bd2d817d198c224c8fb7abfcbc57a7422d1f6eab0fc01ab834790
MD5 aa80251a688ae2e8a3ab648e70395ab4
BLAKE2b-256 852f5f74f976590a92e719d4cf7263b9fe6b0c3f168f7a8516863ca9e10f8810

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page