Skip to main content

Python extension for computing string edit distances and similarities.

Project description

Introduction

This is a fork of python-Levenshtein which also distributes binary wheels for a lot of operating systems and architectures:

  • Windows (amd64 and x86)

  • OSX (10.6+)

  • Linux (x86_64 and i686)

The wheels can be installed with the python-Levenshtein-wheels package on PyPI.

The Levenshtein Python C extension module contains functions for fast computation of

  • Levenshtein (edit) distance, and edit operations

  • string similarity

  • approximate median strings, and generally string averaging

  • string sequence and set similarity

It supports both normal and Unicode strings.

Python 2.2 or newer is required; Python 3 is supported.

StringMatcher.py is an example SequenceMatcher-like class built on the top of Levenshtein. It misses some SequenceMatcher’s functionality, and has some extra OTOH.

Levenshtein.c can be used as a pure C library, too. You only have to define NO_PYTHON preprocessor symbol (-DNO_PYTHON) when compiling it. The functionality is similar to that of the Python extension. No separate docs are provided yet, RTFS. But they are not interchangeable:

  • C functions exported when compiling with -DNO_PYTHON (see Levenshtein.h) are not exported when compiling as a Python extension (and vice versa)

  • Unicode character type used with -DNO_PYTHON is wchar_t, Python extension uses Py_UNICODE, they may be the same but don’t count on it

Documentation

gendoc.sh generates HTML API documentation, you probably want a selfcontained instead of includable version, so run in ./gendoc.sh --selfcontained. It needs Levenshtein already installed and genextdoc.py.

License

Levenshtein is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

See the file COPYING for the full text of GNU General Public License version 2.

History

This package was long missing from the Python Package Index and available as source checkout only, but can now be found on PyPI again.

We needed to restore this package for Go Mobile for Plone and Pywurfl projects which depend on this.

Source code

Authors

  • Maintainer: Toby Harradine <me@tobyharradine.id.au>

  • Python 3 compatibility: Esa Määttä

  • Jonatas CD: Fixed documentation generation

  • Previous maintainers: Antti Haapala <antti@haapala.name>, Mikko Ohtamaa

  • Original code: David Necas (Yeti) <yeti at physics.muni.cz>

Changelog

0.13.0

  • Distributed with wheels.

0.12.0

  • Fixed a bug in StringMatcher.StringMatcher.get_matching_blocks / extract_editops for Python 3; now allow only str editops on both Python 2 and Python 3, for simpler and working code.

  • Added documentation in the source distribution and in GIT

  • Fixed the package layout: renamed the .so/.dll to _levenshtein, and made it reside inside a package, along with the StringMatcher class.

  • Fixed spelling errors.

0.11.2

  • Fixed a bug in setup.py: installation would fail on Python 3 if the locale did not specify UTF-8 charset (Felix Yan).

  • Added COPYING, StringMatcher.py, gendoc.sh and NEWS in MANIFEST.in, as they were missing from source distributions.

0.11.1

  • Added Levenshtein.h to MANIFEST.in

0.11.0

  • Python 3 support, maintainership passed to Antti Haapala

0.10.1 - 0.10.2

  • Made python-Lehvenstein Git compatible and use setuptools for PyPi upload

  • Created HISTORY.txt and made README reST compatible

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-Levenshtein-wheels-0.13.2.tar.gz (38.1 kB view details)

Uploaded Source

Built Distributions

python_Levenshtein_wheels-0.13.2-pp37-pypy37_pp73-win32.whl (43.5 kB view details)

Uploaded PyPy Windows x86

python_Levenshtein_wheels-0.13.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl (46.1 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

python_Levenshtein_wheels-0.13.2-pp36-pypy36_pp73-win32.whl (43.5 kB view details)

Uploaded PyPy Windows x86

python_Levenshtein_wheels-0.13.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl (46.1 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

python_Levenshtein_wheels-0.13.2-pp27-pypy_73-manylinux2010_x86_64.whl (45.0 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

python_Levenshtein_wheels-0.13.2-cp39-cp39-win_amd64.whl (48.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

python_Levenshtein_wheels-0.13.2-cp39-cp39-win32.whl (43.2 kB view details)

Uploaded CPython 3.9 Windows x86

python_Levenshtein_wheels-0.13.2-cp39-cp39-manylinux2010_x86_64.whl (149.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

python_Levenshtein_wheels-0.13.2-cp39-cp39-manylinux2010_i686.whl (140.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

python_Levenshtein_wheels-0.13.2-cp38-cp38-win_amd64.whl (48.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

python_Levenshtein_wheels-0.13.2-cp38-cp38-win32.whl (43.1 kB view details)

Uploaded CPython 3.8 Windows x86

python_Levenshtein_wheels-0.13.2-cp38-cp38-manylinux2010_x86_64.whl (146.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

python_Levenshtein_wheels-0.13.2-cp38-cp38-manylinux2010_i686.whl (137.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

python_Levenshtein_wheels-0.13.2-cp37-cp37m-win_amd64.whl (48.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

python_Levenshtein_wheels-0.13.2-cp37-cp37m-win32.whl (43.1 kB view details)

Uploaded CPython 3.7m Windows x86

python_Levenshtein_wheels-0.13.2-cp37-cp37m-manylinux2010_x86_64.whl (145.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

python_Levenshtein_wheels-0.13.2-cp37-cp37m-manylinux2010_i686.whl (136.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

python_Levenshtein_wheels-0.13.2-cp36-cp36m-win_amd64.whl (48.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

python_Levenshtein_wheels-0.13.2-cp36-cp36m-win32.whl (43.1 kB view details)

Uploaded CPython 3.6m Windows x86

python_Levenshtein_wheels-0.13.2-cp36-cp36m-manylinux2010_x86_64.whl (144.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

python_Levenshtein_wheels-0.13.2-cp36-cp36m-manylinux2010_i686.whl (135.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

python_Levenshtein_wheels-0.13.2-cp27-cp27mu-manylinux2010_x86_64.whl (140.6 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

python_Levenshtein_wheels-0.13.2-cp27-cp27mu-manylinux2010_i686.whl (131.8 kB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

python_Levenshtein_wheels-0.13.2-cp27-cp27m-manylinux2010_x86_64.whl (140.8 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

python_Levenshtein_wheels-0.13.2-cp27-cp27m-manylinux2010_i686.whl (132.2 kB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

File details

Details for the file python-Levenshtein-wheels-0.13.2.tar.gz.

File metadata

  • Download URL: python-Levenshtein-wheels-0.13.2.tar.gz
  • Upload date:
  • Size: 38.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.12

File hashes

Hashes for python-Levenshtein-wheels-0.13.2.tar.gz
Algorithm Hash digest
SHA256 7bd8fc3ceeeaca626848a0d7a01d02f5b93475f2d56eaa37921f1271dec7bfb1
MD5 475db4635471f674377cb70109be35a2
BLAKE2b-256 83b4137725a5db8939b019556bec14c5985e37f3f73cd43501b44dcfbdab15aa

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-pp37-pypy37_pp73-win32.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-pp37-pypy37_pp73-win32.whl
Algorithm Hash digest
SHA256 150852c3851659fc95a3435331e9c980ebde6729f2cb0cf5ed4a33f98b0f0839
MD5 a4b6163f1c0acbc1a6202249081b4c17
BLAKE2b-256 295909cff91654ce96bdc9ce5b48db7e409fe5cc499d4755f1e0128949fcce60

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4c55f77ac0b9c87152a409824f9880c8abebe0a7381956a260a4c52e16e32b6b
MD5 77bf34678be9d39b13b7a518a072c3d1
BLAKE2b-256 2122b3595864c9cedaf0c1f74fe27506f400f784745bc68e63b6d93e490e98b2

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-pp37-pypy37_pp73-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-pp37-pypy37_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5f37c055dcf8ea3fa88bb62c63195cbb05619236ae289aefa1cb0720fa01373e
MD5 7cda8212968da217ba7feb98118773dc
BLAKE2b-256 fea74f36d4b764f4d338233c87d5520928940c1cecc1fd5d3c0d3879e613cbbf

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-pp36-pypy36_pp73-win32.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-pp36-pypy36_pp73-win32.whl
Algorithm Hash digest
SHA256 641a14fd3bf28e1b4a443cbf0a5c8c7ce255f2be67019862d3734274018e56ed
MD5 1c367956f2ac08608ea06e780cad7c07
BLAKE2b-256 0ffb7a960188f2cfeec2126bde05568ff9daf9ff543e1d9da1e0bf850c637d9c

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 96cb222d45da3c960f22a2bb694a0b4d57d2a62a03b24e4dfae01ab5a1a30cfe
MD5 c04eb3fe8aa6116a7451a78ffff796f1
BLAKE2b-256 82458de2fef8e1e6c84029323407323165082aadb501b9ebfee8169d47ab5fad

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-pp36-pypy36_pp73-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-pp36-pypy36_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c50683f846cbf1248f82d05b11487a7f0aaa01583d82c39b009b9c7db4fa358e
MD5 d8d01f83ecc36a32bb64309078d6bcf0
BLAKE2b-256 3a9d7f0784c0b70e4b5c0e53a031b922dddd10d901d98a65e8e13d046f1cc46b

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-pp27-pypy_73-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-pp27-pypy_73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 92cf7b7b3e9cac8637575640baefd3c860d87cd001893a19a5bccb6eb9027ce4
MD5 6b261396bfdb8162ab84763524e18a1d
BLAKE2b-256 9a372a66a6e116e67367952bd69c4cc03c72aee99ee90cfc2269e1aed0e36fab

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-pp27-pypy_73-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-pp27-pypy_73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ce672ee3f9d635e63fdaba07d7a7dc4711c51007ab4d9033d8380bad8b7c9ade
MD5 5c5beb60c9de8a347094bba257b2a80d
BLAKE2b-256 e38876afb12977742be89ff013635d7574fb161093fb557778126200c8703596

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: python_Levenshtein_wheels-0.13.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 48.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.0

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 350d473dc4f262ce37b12c57806b0422bd5a9a1a755717174225ef6062ab2c5a
MD5 76691b33940d0384d42b77c54d5beacf
BLAKE2b-256 53151cfa838b889260ee23f7682e79a75ac11d95563f24b9ba2173b43fb51715

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: python_Levenshtein_wheels-0.13.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 43.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.0

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2ad9aee1bd64b2e0faa80417c352a04f6b963424f51f2074ad279e6a6cdff603
MD5 75d501185b38ad67d9ac03185c4da37e
BLAKE2b-256 66d9cedde65fad7584581bf87c322fc5468fdc8d82189e931068e2e233479ec3

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c80f9b14e5f361fd909981ed1474eeb22719e501153f3b98d44d97da2becffb7
MD5 71ef88606c444b01765241f1a6a8677e
BLAKE2b-256 6b258562abd3357b73f56be7844a3ec47a73efe7e2be7fef975f544ab5c0348e

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 db093fdd8386dd9733064541455a45b777125db0e232f95e732ccb1e4e3204ae
MD5 dfe0362c299bf9a2d057021dc41acb9e
BLAKE2b-256 ad5b9167c9f00c05c808773554d57ccaf11170c71c06fc053fdc98471ecabb9d

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp39-cp39-manylinux2010_i686.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a3b448dd1df9678ebf072230a4f12c89a9c0d26283ae0316cc1041e340ae6848
MD5 75bae65fc762e58643f74b710f2d0c6a
BLAKE2b-256 9b2f6691b94f7e50f314a7b3838964eefffe1237bef53da4712b122af5fd79b3

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f9a9d6fd3b23dd992ad97d84016ff83ebef0a3deb0d17cd7ec1dec6bd2a03fe3
MD5 ed2dd1c4bb84e04310562a7bca3cc292
BLAKE2b-256 91d3ae9ca1693b60c3df1368e39e5cc4aea3087f1df2d7aa31c39f5482749cc9

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp39-cp39-manylinux1_i686.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ca140bfaca168bfd81bade0a2f8ddaedc65dd508aabe704e7bf6902af4a72133
MD5 110d5832c4a47f91e6a9cdd4a4f89895
BLAKE2b-256 0572acc1e4fed3da7cefabc460c7c0cf25466ac0534c58609c69921779ff513d

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: python_Levenshtein_wheels-0.13.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 48.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.0

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d439e44856702a0c14a2470bc026dacfe89acead538b64d32d80a81954e86c66
MD5 e3c7593a4f136eaf9ea97ed4cfd2c7dc
BLAKE2b-256 c5f292836f7abcbe11569659324f6b14451cd3cb9b8887760cf4a0796ac76524

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: python_Levenshtein_wheels-0.13.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 43.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.0

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8511dc759b61e6ddb68ceab7540a3d9facaa648468cf117a0f91d72abb34ec77
MD5 54bcc625cd17e5f5a5f767e0132e261f
BLAKE2b-256 2fdbd27b33839088f31d33ad3d5d6834a17c51c69807f6fbd88935afa3ae9727

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 adb2c3cb7b8e2c11785908d68b5097fa634da179c2002a4b7b3c7dff991573d8
MD5 af97a4b4ec829f1c9951648cca5f8fa3
BLAKE2b-256 ad9072705fdd696fef4476e0d3c705b876f8a7b451b726dc204fc865af30b761

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 58c3bbc94fa65e9f434593092fe26021166eb9c0b129dddcaf415e839d33ca47
MD5 ecd2730107ba56f73664980089508701
BLAKE2b-256 eb717707040fcbdc2cfde5db754f5b60978959cf79387ec4954f93c92f9e575c

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp38-cp38-manylinux2010_i686.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ed71883e2a48865012819e961e09690c699ba236097a77a6bf062412c2553d6a
MD5 4bf2ed1f10a7defd5c832857f5f01421
BLAKE2b-256 d355eb63d51aefd0f5185ca3a86d49c7f930981f5924c9199151781d2978e485

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2e101f3c5f74edcc4b0761909790ba83afdfcdef8d0c95fef9ccbb2cda413cee
MD5 8bb55d7ed1de39bc141542ae3928be4a
BLAKE2b-256 ea0e8481d1320b303349f9e90b648ff138b80aac3bbf94d713fa971fa7bb7499

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp38-cp38-manylinux1_i686.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 cca7d7d7a4e94558482767fb42db557655c404bb80752cf9d362fc0c3839e7f5
MD5 61679f4480e304936c684cad1398d5bc
BLAKE2b-256 7aace6059bd943352da371cafa0d02c52d71e90108f9a37e22a031a66c8adb2e

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: python_Levenshtein_wheels-0.13.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 48.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.0

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ae14f2bc45192bb0bcdda2c8183252c1e96b669ba60ed95cfecdb6fb6cf77586
MD5 9613b5b36af40d37f52b67751ea5d228
BLAKE2b-256 3b29f192c1d7acb793ea72084f8af8e14699bc7c6112ada2498d8382f647df1d

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: python_Levenshtein_wheels-0.13.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 43.1 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.0

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 b3ab0f2828f74eb0691d77ab46dc2effb459dd889fb0e4c4e7d835ab1e4bd86d
MD5 4d1f29b11d430439aa75e3b750920d14
BLAKE2b-256 8d37e43147eadb2e2550a190bf14775e4e868c8907e8b2ec7a8c201041524469

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d17b470ab901b1e06b96a8c9f29d6182449075f5c10ebaaee59e820a22805c0f
MD5 c28fed8d30752c19981348c45b565d73
BLAKE2b-256 18a9c060a42e1baf2b8d8bc97f1ace1c702b501ba1db13e706d2d0a4b683b710

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7b12d9a5442f1958a04dd4b9136620c8f510982a9c8561ac2f3482eb80c10c1b
MD5 6e99b9be671b919e3793ab14410386d0
BLAKE2b-256 0247a5daa3803872249bcc9d4dc154fae0a3b8d83a407e540fff3b38def45780

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp37-cp37m-manylinux2010_i686.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2257bfd55fd930fb57ac05840b31d0334e329e290fea81e8458ce87d4793ff7e
MD5 20cf67f9c70c508b23322aab7852a6e1
BLAKE2b-256 111dc6b20db1f72b84a97b37e3fc00e7ea8dc657e7cb61f336779b178f32d473

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0922fd8eb1922bc1bfae40bca8013e2e3d37edab5913707d832136274994f58f
MD5 57eedab4ae5f0e434495afd2ca6078d6
BLAKE2b-256 04a17f0a6728f17767dcf06639693a061859127a413217d6a418877badbc03b7

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp37-cp37m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ca2cb3aea90227af2633ed58a2187fdb892a6373407c6aae5e3be28eb3b5cae3
MD5 b259813232df4607962dc1692d8b41da
BLAKE2b-256 f659153f58751a9fd9896ea36760e0ede9ff0f02568b72945160e393c4587366

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: python_Levenshtein_wheels-0.13.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 48.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.0

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 088cb1ec5cefc1c1d28e2b2bce0f11159a9f934565c6515f288e1d1526cbd6d6
MD5 36074205b61314255c252d7e69c2085f
BLAKE2b-256 529a148925c90de3cc710c2cc52bb58135f09932239fd6b3b807c15227f73a12

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: python_Levenshtein_wheels-0.13.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 43.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.0

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 935b014887fcfd60544ca9cab7810acd5504529d85ea058bb167259c77412831
MD5 ab36096fe3337d024cc5a23778b439e4
BLAKE2b-256 c1cb5f69a94dc3ac7e4f610be40353aee6c458631abc901294b4de7f3bc123b4

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 524143d10396a9c015ffd5fa75ffbd3abf7aeec8ff5eaf4d5c559f5805fe174b
MD5 ef46ac12675c18817acde87d56fff2c9
BLAKE2b-256 8fd31f2129ee34b5d62113a5fc42ee23b6bac862e30c2f64cf989bc4c09bb9ff

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6c435c871a7c2ee9b90cdb14df9bb4d3388472a71eb8727f903d7271a6923f4f
MD5 a14760f3c964eac06fd8317996c865ec
BLAKE2b-256 34db7ebbea471796823c6327e7c53dadad7561ef33831cd979425e9a77568051

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp36-cp36m-manylinux2010_i686.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 973ea9372520077191d30e31e27d0bd256b36646ec9b642fc6afe2de4093a8eb
MD5 c66f990a2233d6a9762de0ad6e5ed31f
BLAKE2b-256 dbd552b5bb9d36afa4bdbdc7ca26ab8254eb42b6dc15acae6fe41b8a0383b313

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 39beafdf1621a01d2bb41eb3594016d601096dc5243819651d5f2ab2676184db
MD5 ee929575e7202cea3a6cd2f471863edc
BLAKE2b-256 2e1531471bec1e0317b38996787d745376feaa555d31cdccc1ea95eccc4b468b

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 74f1726463d8cdd53966e32f0e3431466506b7dc74c7fa255f53cf3f207aaf36
MD5 c9b4fdb401da03ab79872e72d46449e1
BLAKE2b-256 44ffb1f152a1416a7578be1f88f2af1552333fa13ec6fcc565c6719053afa69a

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e6120a75e75c36dd647303ea932136d57c338ac6fe439c664425e6a4c1a9ccb3
MD5 911a5384318e0102fe9453a74b27d7c5
BLAKE2b-256 c6c0137481f2a52b1c2efeda21d7119632608c5c29d004bd1eb9bcacb1d3082d

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a361cb9531ca5c626f6d2000c584ffd275a663cfd0c1552df996a892e23ccd2a
MD5 f8508cafbff5d3ff3654dfce979b514e
BLAKE2b-256 0ea7ee954aab0944b7c82dda0835675c40039a2de5c57e11eab4d8ae27007f4d

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c2a4710965a3b3e1c95ffe55bd9c3b7af2b8c5ca20bd6d3c7b2c8b19dc7c8d52
MD5 637a418730b6db171120388031a72190
BLAKE2b-256 13abaa121ee2f9f362c7b0ef25b743620f4663b469207034df96123ec37718f7

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 68bd86b9ecd9145939f902f989bf0c2a4116248f63cd9417f39f91be17cceffd
MD5 d0a1b48a84c9f5d5c318f73168300ad3
BLAKE2b-256 bea1959943c611d3e9563fd0813910680b422962eb5355c82ac10928ecbd2afe

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 80755131a888062345a5dc4d67cb40b103d3d56b1fbf73ebc23b09e90abe2aa5
MD5 ddf15705315f9bcbacc23124b16e8137
BLAKE2b-256 9f12a69751ac10d4973870f048795dd739b660ab9c938451945cc6801d9b75e0

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp27-cp27m-manylinux2010_i686.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 73efa05902c0b544c1228dee3460766141cca4bbe8cab759a179b3d0de830f20
MD5 366f39b63745413439dd3ecefd739e45
BLAKE2b-256 f75ee569f398f3f259c3dc510141fc40487c437f39ff3bb9ea234351ba145754

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3546e97f69040ee18945dfbd989f38b1a51771a73fa2e5c927a19617cee8770f
MD5 35461779aed7265911d8b819033d422e
BLAKE2b-256 6e22d56da02ddcdede8b682eeeab0ecb029ab8f6d2783dcec827fd308b25635e

See more details on using hashes here.

File details

Details for the file python_Levenshtein_wheels-0.13.2-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for python_Levenshtein_wheels-0.13.2-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c18114a8685684de347a7180c279b9ac228f2efff550db0f6e6d9b51e43a0d40
MD5 9142af70e4188633b6de5293e10c52ea
BLAKE2b-256 f8094ac9c07926ccada2fcfb057f597c58bdf582c28ea183183e38ab5f1fcf97

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page