Skip to main content

A Python engine for the Liquid template language.

Project description

A Python implementation of Liquid, the safe, customer-facing template language for flexible web apps.

Version conda-forge Tests Coverage License Python versions PyPy versions
from liquid import Template

template = Template("Hello, {{ you }}!")
print(template.render(you="World"))  # "Hello, World!"
print(template.render(you="Liquid"))  # "Hello, Liquid!"

Installing

Install Python Liquid using Pipenv:

$ pipenv install python-liquid

Or pip:

$ python -m pip install -U python-liquid

Or from conda-forge:

$ conda install -c conda-forge python-liquid

Compatibility

We strive to be 100% compatible with the reference implementation of Liquid, written in Ruby. That is, given an equivalent render context, a template rendered with Python Liquid should produce the same output as when rendered with Ruby Liquid.

See the known issues page for details of known incompatibilities between Python Liquid and Ruby Liquid, and please help by raising an issue if you notice an incompatibility.

Benchmark

You can run the benchmark using make benchmark (or python -O performance.py if you don’t have make) from the root of the source tree. On my ropey desktop computer with a Ryzen 5 1500X, we get the following results.

Best of 5 rounds with 100 iterations per round and 60 ops per iteration (6000 ops per round).

lex template (not expressions): 1.3s (4727.35 ops/s, 78.79 i/s)
                 lex and parse: 6.4s (942.15 ops/s, 15.70 i/s)
                        render: 1.7s (3443.62 ops/s, 57.39 i/s)
         lex, parse and render: 8.2s (733.30 ops/s, 12.22 i/s)

And PyPy3.7 gives us a decent increase in performance.

Best of 5 rounds with 100 iterations per round and 60 ops per iteration (6000 ops per round).

lex template (not expressions): 0.58s (10421.14 ops/s, 173.69 i/s)
                 lex and parse: 2.9s (2036.33 ops/s, 33.94 i/s)
                        render: 1.1s (5644.80 ops/s, 94.08 i/s)
         lex, parse and render: 4.2s (1439.43 ops/s, 23.99 i/s)

On the same machine, running rake benchmark:run from the root of the reference implementation source tree gives us these results.

/usr/bin/ruby ./performance/benchmark.rb lax

Running benchmark for 10 seconds (with 5 seconds warmup).

Warming up --------------------------------------
             parse:     3.000  i/100ms
            render:     8.000  i/100ms
    parse & render:     2.000  i/100ms
Calculating -------------------------------------
             parse:     39.072  (± 0.0%) i/s -    393.000  in  10.058789s
            render:     86.995  (± 1.1%) i/s -    872.000  in  10.024951s
    parse & render:     26.139  (± 0.0%) i/s -    262.000  in  10.023365s

I’ve tried to match the benchmark workload to that of the reference implementation, so that we might compare results directly. The workload is meant to be representative of Shopify’s use case, although I wouldn’t be surprised if their usage has changed subtly since the benchmark fixture was designed.

Contributing

Please see Contributing to Python Liquid.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-liquid-1.4.5.tar.gz (783.5 kB view details)

Uploaded Source

Built Distribution

python_liquid-1.4.5-py3-none-any.whl (160.5 kB view details)

Uploaded Python 3

File details

Details for the file python-liquid-1.4.5.tar.gz.

File metadata

  • Download URL: python-liquid-1.4.5.tar.gz
  • Upload date:
  • Size: 783.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for python-liquid-1.4.5.tar.gz
Algorithm Hash digest
SHA256 c367b4dec3e52621b87a7475418bf505a1774665529b3bc7364a9bf8afb8e022
MD5 2eb6692f858b24fdd10b4939496cc48d
BLAKE2b-256 b6f820b686878f0f9912b1a756c5b9ee160a30f679e544cc965ce12560d7c044

See more details on using hashes here.

File details

Details for the file python_liquid-1.4.5-py3-none-any.whl.

File metadata

File hashes

Hashes for python_liquid-1.4.5-py3-none-any.whl
Algorithm Hash digest
SHA256 acd43dedeb1d20d1ca19f8b0ef544882198960b151435813c68cc26bedc7651c
MD5 dcc65a3be544e2bf11bb1ffe6a7a8c89
BLAKE2b-256 ce59cbaa646fea0dc01e07360175761299e4838f74fbc0aa9b5501bfc8b309e3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page