Skip to main content

A Python engine for the Liquid template language.

Project description

A Python implementation of Liquid, the safe, customer-facing template language for flexible web apps.

Version conda-forge Tests Coverage License Python versions PyPy versions
from liquid import Template

template = Template("Hello, {{ you }}!")
print(template.render(you="World"))  # "Hello, World!"
print(template.render(you="Liquid"))  # "Hello, Liquid!"

Installing

Install Python Liquid using Pipenv:

$ pipenv install python-liquid

Or pip:

$ python -m pip install -U python-liquid

Or from conda-forge:

$ conda install -c conda-forge python-liquid

Compatibility

We strive to be 100% compatible with the reference implementation of Liquid, written in Ruby. That is, given an equivalent render context, a template rendered with Python Liquid should produce the same output as when rendered with Ruby Liquid.

See the known issues page for details of known incompatibilities between Python Liquid and Ruby Liquid, and please help by raising an issue if you notice an incompatibility.

Benchmark

You can run the benchmark using make benchmark (or python -O performance.py if you don’t have make) from the root of the source tree. On my ropey desktop computer with a Ryzen 5 1500X and Python 3.11.0, we get the following results.

Best of 5 rounds with 100 iterations per round and 60 ops per iteration (6000 ops per round).

lex template (not expressions): 1.2s (5020.85 ops/s, 83.68 i/s)
                 lex and parse: 5.0s (1197.32 ops/s, 19.96 i/s)
                        render: 1.4s (4152.92 ops/s, 69.22 i/s)
         lex, parse and render: 6.5s (922.08 ops/s, 15.37 i/s)

And PyPy3.7 gives us a decent increase in performance.

Best of 5 rounds with 100 iterations per round and 60 ops per iteration (6000 ops per round).

lex template (not expressions): 0.58s (10308.67 ops/s, 171.81 i/s)
                 lex and parse: 3.6s (1661.20 ops/s, 27.69 i/s)
                        render: 0.95s (6341.14 ops/s, 105.69 i/s)
         lex, parse and render: 4.6s (1298.18 ops/s, 21.64 i/s)

On the same machine, running rake benchmark:run from the root of the reference implementation source tree gives us these results.

/usr/bin/ruby ./performance/benchmark.rb lax

Running benchmark for 10 seconds (with 5 seconds warmup).

Warming up --------------------------------------
             parse:     3.000  i/100ms
            render:     8.000  i/100ms
    parse & render:     2.000  i/100ms
Calculating -------------------------------------
             parse:     39.072  (± 0.0%) i/s -    393.000  in  10.058789s
            render:     86.995  (± 1.1%) i/s -    872.000  in  10.024951s
    parse & render:     26.139  (± 0.0%) i/s -    262.000  in  10.023365s

I’ve tried to match the benchmark workload to that of the reference implementation, so that we might compare results directly. The workload is meant to be representative of Shopify’s use case, although I wouldn’t be surprised if their usage has changed subtly since the benchmark fixture was designed.

Contributing

Please see Contributing to Python Liquid.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-liquid-1.5.0.tar.gz (818.1 kB view details)

Uploaded Source

Built Distribution

python_liquid-1.5.0-py3-none-any.whl (177.7 kB view details)

Uploaded Python 3

File details

Details for the file python-liquid-1.5.0.tar.gz.

File metadata

  • Download URL: python-liquid-1.5.0.tar.gz
  • Upload date:
  • Size: 818.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for python-liquid-1.5.0.tar.gz
Algorithm Hash digest
SHA256 06a4dee24c0f3318571c4ba1ea64347e450dcee7c9f7eb3ba400f9032b598d21
MD5 9e37632216eb5efa6845950ca0751585
BLAKE2b-256 0820c94d41c6ddbae7053719a36dc49f4f3014f2b0cff5e1e59059ac83837dbb

See more details on using hashes here.

File details

Details for the file python_liquid-1.5.0-py3-none-any.whl.

File metadata

File hashes

Hashes for python_liquid-1.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 279a264afc1ccc4bafaa83d6764ce0eddccf68f738bc77c36e047c14bc9b1dbc
MD5 8d2ad9be57e340555454094bad38ea69
BLAKE2b-256 47d0f37babf36bfdddb30984dfdd982f57971ee877037427461ba684cd6b141b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page