Skip to main content

Lorem ipsum generator.

Project description

Lorem ipsum generator.

In publishing and graphic design, lorem ipsum is a placeholder text commonly used to demonstrate the visual form of a document or a typeface without relying on meaningful content.

The lorem module provides a generic access to generating the lorem ipsum text from its very original text:

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Usage of the lorem module is rather simple. Depending on your needs, the lorem module provides generation of words, sentences, and paragraphs.

Get Random Words

The lorem module provides two different ways for getting random words.

  1. word -- generate a list of random words

    word(count=1, func=None, args=[], kwargs={}) -> Iterable[str]
    
  2. get_word -- return random words

    get_word(count=1, sep=' ', func=None, args=[], kwargs={}) -> str
    

Get Random Sentences

The lorem module provides two different ways for getting random sentences.

  1. sentence -- generate a list of random sentences

    sentence(count=1, comma=(0, 2), word_range=(4, 8)) -> Iterable[str]
    
  2. get_sentence -- return random sentences

    get_sentence(count=1, comma=(0, 2), word_range=(4, 8), sep=' ') -> Union[str]
    

Get Random Paragraphs

The lorem module provides two different ways for getting random paragraphs.

  1. paragraph -- generate a list of random paragraphs

    paragraph(count=1, comma=(0, 2), word_range=(4, 8), sentence_range=(5, 10)) -> Iterable[str]
    
  2. get_paragraph -- return random paragraphs

    get_paragraph(count=1, comma=(0, 2), word_range=(4, 8), sentence_range=(5, 10), sep=os.linesep) -> Union[str]
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python_lorem-1.3.0.post3.tar.gz (11.7 kB view details)

Uploaded Source

Built Distributions

python_lorem-1.3.0.post3-cp312-none-any.whl (9.1 kB view details)

Uploaded CPython 3.12

python_lorem-1.3.0.post3-cp311-none-any.whl (9.1 kB view details)

Uploaded CPython 3.11

python_lorem-1.3.0.post3-cp310-none-any.whl (9.1 kB view details)

Uploaded CPython 3.10

python_lorem-1.3.0.post3-cp39-none-any.whl (9.1 kB view details)

Uploaded CPython 3.9

python_lorem-1.3.0.post3-cp38-none-any.whl (9.1 kB view details)

Uploaded CPython 3.8

File details

Details for the file python_lorem-1.3.0.post3.tar.gz.

File metadata

  • Download URL: python_lorem-1.3.0.post3.tar.gz
  • Upload date:
  • Size: 11.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for python_lorem-1.3.0.post3.tar.gz
Algorithm Hash digest
SHA256 570d532a179783e024864b2799651f748a3e26ded7ee6d694b67f429f7bca6fd
MD5 84d4e607d5efee00254d904fde6fee68
BLAKE2b-256 a5ffda026761ffdd68f5c9415ff54c4adaefaa409c422b41d18ed8fa6a59bff5

See more details on using hashes here.

File details

Details for the file python_lorem-1.3.0.post3-pp310-none-any.whl.

File metadata

File hashes

Hashes for python_lorem-1.3.0.post3-pp310-none-any.whl
Algorithm Hash digest
SHA256 540010ab12cefc40b2c2bb390b2b65f50efe1097d93ab335228cfb11165f0c8d
MD5 31223c1ec2417a815057c3409d7cac37
BLAKE2b-256 6c905cd010634bbb29c955cb8b47e7606e902231d462d6aeed9c925284fa44b7

See more details on using hashes here.

File details

Details for the file python_lorem-1.3.0.post3-pp39-none-any.whl.

File metadata

File hashes

Hashes for python_lorem-1.3.0.post3-pp39-none-any.whl
Algorithm Hash digest
SHA256 97b3f62c8d8b94ea444c06397b8f59205151751327f6413ed380451b0e743867
MD5 667b85f718b442ec67e698f8323fc0c3
BLAKE2b-256 7998666d4efefe1a64cf63b8448a10752ad236f61827726428afbe18aa35b59f

See more details on using hashes here.

File details

Details for the file python_lorem-1.3.0.post3-pp38-none-any.whl.

File metadata

File hashes

Hashes for python_lorem-1.3.0.post3-pp38-none-any.whl
Algorithm Hash digest
SHA256 1b075c670a18df137109c9d23e8f769aaa5c1b889aef4f95dd712f5f8476872d
MD5 88ae11a447e7baf14a961a1fc343f243
BLAKE2b-256 fbccbf1add9655915d0317886070f192298d71697f525e3c78cb65904ab09d0e

See more details on using hashes here.

File details

Details for the file python_lorem-1.3.0.post3-cp312-none-any.whl.

File metadata

File hashes

Hashes for python_lorem-1.3.0.post3-cp312-none-any.whl
Algorithm Hash digest
SHA256 6df337cc3c5fe2869f328df669164ce3633cf5347d6a7b92c86a96ac4295b30d
MD5 74e8d2abd114c1a88e259fbb85a8e8e8
BLAKE2b-256 b410e1533d7aa598cdf73772929ea7e1ef3d62af2260c88b616862b2b2dac974

See more details on using hashes here.

File details

Details for the file python_lorem-1.3.0.post3-cp311-none-any.whl.

File metadata

File hashes

Hashes for python_lorem-1.3.0.post3-cp311-none-any.whl
Algorithm Hash digest
SHA256 c6bf3b89374ab7d231cec4b7855dc86fb7877bb52019394b97a34e71c597e639
MD5 29b7d58963d75a5dd52fbcf0945d9207
BLAKE2b-256 7417fbfcf6c240a7e269380eda259c01c62ac367f5c7c2a34e07cad05a51ef16

See more details on using hashes here.

File details

Details for the file python_lorem-1.3.0.post3-cp310-none-any.whl.

File metadata

File hashes

Hashes for python_lorem-1.3.0.post3-cp310-none-any.whl
Algorithm Hash digest
SHA256 e88a460eebf2d7e7a58f2d65c4c300a57762f9a74d5637764b9c44a01c8825db
MD5 da90d77ec60c7cb890619afbb8cafc71
BLAKE2b-256 f71aab005d62e61fde44486fbe36e844469bd69f4d278bfd6cfe15f151067253

See more details on using hashes here.

File details

Details for the file python_lorem-1.3.0.post3-cp39-none-any.whl.

File metadata

File hashes

Hashes for python_lorem-1.3.0.post3-cp39-none-any.whl
Algorithm Hash digest
SHA256 56aad2ba13254c1ed0c7ef9a55bbd3f748c5c9e15444c270d3ab73e35c789aab
MD5 cc8e7cc8848f0d928fa7d4612ff29d27
BLAKE2b-256 68a8a9cb88ffda1671a4107c0e611cade55d91ba44a636f3b09dc1139059acb6

See more details on using hashes here.

File details

Details for the file python_lorem-1.3.0.post3-cp38-none-any.whl.

File metadata

File hashes

Hashes for python_lorem-1.3.0.post3-cp38-none-any.whl
Algorithm Hash digest
SHA256 ad77fd80be2fe5cb75d4178e2a7b70f50bb0894744a341cf52f1dabe30f7e2dd
MD5 507a698c1aff0095b62a9b8dccd961c6
BLAKE2b-256 0fa078c7dbd9e85318e7f5831c1fdc567e2d9187e0c832e0bbf49ee6c1f250d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page