A set of tools to help create algorithmic trading strategies and test them, in a vectorized way.
Project description
market-break
a set of utilities for backtesting vectorized trading algorithms, high-frequency trading strategies and investing strategies.
Installation
pip install python-market-break
Connect to a live database for real-time data.
from sqlalchemy import create_engine
engine = create_engine('sqlite:///database/2024-06-14.sqlite')
Extract The data from the database into a DataFrame.
from cryptocore.market.database import extract_dataframe, table_name
EXCHANGE = "binance"
SYMBOL = "ETH/USDT"
df = extract_dataframe(engine, table_name(exchange=EXCHANGE, symbol=SYMBOL))
df = df.iloc[3500:7000].reset_index()
df
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
index | exchange | symbol | timestamp | datetime | received_datetime | open | high | low | close | bid | ask | bid_volume | ask_volume | side | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 3500 | binance | ETH/USDT | 1.718353e+12 | 2024-06-14 11:19:38.208 | 2024-06-14 08:19:38.156 | 3510.78 | 3539.83 | 3428.0 | 3521.99 | 3521.98 | 3521.99 | 59.7590 | 21.0623 | buy |
1 | 3501 | binance | ETH/USDT | 1.718353e+12 | 2024-06-14 11:19:39.031 | 2024-06-14 08:19:39.155 | 3510.78 | 3539.83 | 3428.0 | 3521.98 | 3521.98 | 3521.99 | 58.2914 | 28.2213 | sell |
2 | 3502 | binance | ETH/USDT | 1.718353e+12 | 2024-06-14 11:19:39.857 | 2024-06-14 08:19:40.158 | 3510.78 | 3539.83 | 3428.0 | 3521.99 | 3521.98 | 3521.99 | 58.2418 | 24.8653 | buy |
3 | 3503 | binance | ETH/USDT | 1.718353e+12 | 2024-06-14 11:19:40.574 | 2024-06-14 08:19:41.179 | 3510.78 | 3539.83 | 3428.0 | 3521.99 | 3521.98 | 3521.99 | 63.9093 | 24.8653 | buy |
4 | 3504 | binance | ETH/USDT | 1.718353e+12 | 2024-06-14 11:19:42.080 | 2024-06-14 08:19:42.161 | 3510.78 | 3539.83 | 3428.0 | 3521.99 | 3521.98 | 3521.99 | 64.6069 | 14.6805 | buy |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
3495 | 6995 | binance | ETH/USDT | 1.718357e+12 | 2024-06-14 12:17:55.995 | 2024-06-14 09:17:55.971 | 3493.19 | 3539.83 | 3428.0 | 3518.19 | 3518.19 | 3518.20 | 125.1496 | 5.5759 | sell |
3496 | 6996 | binance | ETH/USDT | 1.718357e+12 | 2024-06-14 12:17:56.069 | 2024-06-14 09:17:56.976 | 3493.19 | 3539.83 | 3428.0 | 3518.20 | 3518.19 | 3518.20 | 125.1496 | 5.5728 | buy |
3497 | 6997 | binance | ETH/USDT | 1.718357e+12 | 2024-06-14 12:17:57.779 | 2024-06-14 09:17:58.075 | 3492.59 | 3539.83 | 3428.0 | 3518.20 | 3518.19 | 3518.20 | 121.2325 | 7.5728 | buy |
3498 | 6998 | binance | ETH/USDT | 1.718357e+12 | 2024-06-14 12:17:58.886 | 2024-06-14 09:17:58.973 | 3492.59 | 3539.83 | 3428.0 | 3518.20 | 3518.19 | 3518.20 | 83.2826 | 7.7234 | buy |
3499 | 6999 | binance | ETH/USDT | 1.718357e+12 | 2024-06-14 12:18:00.028 | 2024-06-14 09:17:59.973 | 3492.60 | 3539.83 | 3428.0 | 3518.20 | 3518.19 | 3518.20 | 75.6586 | 9.3705 | buy |
3500 rows × 15 columns
Import column names to handle the data.
from market_break.labels import BID, ASK, DATETIME, ENTRY, EXIT, TYPE, LONG
Import a class of backtesting functions.
from market_break.backtest import Trades
Generate trades record, both short and long as a DataFrame, from definition of up-trends and down-trends.
trades = Trades.generate(
up=df[ASK] > df[ASK].shift(1),
down=df[BID] < df[BID].shift(1),
adjust=True
)
Process the results of the generated trades.
FEE = 0.001
returns = Trades.returns(trades, bid=df[BID], ask=df[ASK], fee=FEE)
Imports a class of Plotting trading results.
from market_break.backtest import Plot
Plot a histogram of the trades returns.
Plot.returns_histogram(returns, bins=35)
Plot a graph of the trades returns.
Plot.returns_signals(returns, index=df[DATETIME].iloc)
Plot pie graphs of the winning and losing trades and their profits and losses.
Plot.returns_pie(returns)
Plot the signals for long and short entries and exits, with the bid-ask spread. Also plotting The balance, profits and losses.
long_trades = trades[trades[TYPE] == LONG]
Plot.price_signals(
bid=df[BID], ask=df[ASK], index=df[DATETIME].iloc,
long=long_trades[ENTRY], short=long_trades[EXIT]
)
Plot.returns_balance(returns, index=df[DATETIME].iloc)
Import a class for generating a report from the results.
from market_break.backtest import Report
Generating and displaying the results with the report.
report = Report.generate(
index=df[DATETIME], returns=returns,
long=trades[EXIT].values, short=trades[EXIT].values
)
print(Report.repr(report))
[Index]
start 2024-06-14 11:19:38.20
end 2024-06-14 12:18:00.02
total duration 0 days 00:58:21.82
min. tick duration 0:00:00.06
max. tick duration 0:00:01.90
avg. tick duration 0:00:01.00
ticks 3500
[Trades]
long trades 125
short trades 125
min. TUW 0:0
max. TUW 0:0
avg. TUW 0:0
[Gains]
[%] min. gain 0.0003
[%] max. gain 0.1482
[%] avg. gain 0.0291
[%] total gains 2.4411
winning trades 84
[Losses]
[%] min. loss -0.0003
[%] max. loss -0.017
[%] avg. loss -0.0063
[%] total losses -0.2383
losing trades 38
[Performance]
PnL factor 10.245
avg. profit factor 1.0002
[%] win rate 67.2
[%] total profit 2.2029
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file python_market_break-3.2.3.tar.gz
.
File metadata
- Download URL: python_market_break-3.2.3.tar.gz
- Upload date:
- Size: 21.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.12.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d9459b1ecdc0623b42ea6e411aad8f03a28d8851628944abec042c37c7db4a04 |
|
MD5 | a13adaebac22c903b4f9f1fb25a93427 |
|
BLAKE2b-256 | 0c3d32a153b89f00163adc0f5d7a8cb8d5b55e5c6971282fe8d0325599569487 |