Skip to main content

hash, hmac, RSA, and X.509 with an mbed TLS back end

Project description

https://circleci.com/gh/Synss/python-mbedtls/tree/develop.svg?style=svg https://coveralls.io/repos/github/Synss/python-mbedtls/badge.svg?branch=develop

python-mbedtls is a free cryptographic library for Python that uses mbed TLS for back end.

mbed TLS (formerly known as PolarSSL) makes it trivially easy for developers to include cryptographic and SSL/TLS capabilities in their (embedded) products, facilitating this functionality with a minimal coding footprint.

python-mbedtls API follows the recommendations from PEP 452: API for Cryptographic Hash Functions v2.0 and PEP 272 API for Block Encryption Algorithms v1.0 and can therefore be used as a drop-in replacements to PyCrypto or Python’s hashlib and hmac

License

python-mbedtls is licensed under the MIT License (see LICENSE.txt). This enables the use of python-mbedtls in both open source and closed source projects. The MIT License is compatible with both GPL and Apache 2.0 license under which mbed TLS is distributed.

Installation

The bindings are tested with Python 2.7, 3.4, 3.5, and 3.6.

mbedtls is available on Debian. Install with:

# apt-get install libmbedtls-dev
# apt-get install libpython-dev   # for Python 2, or
# apt-get install libpython3-dev  # for Python 3

and pyton-mbedtls:

$ python -m pip install python-mbedtls

Message digest with mbedtls.hash

The mbedtls.hash module provides MD5, SHA-1, SHA-2, and RIPEMD-160 secure hashes and message digests. The API follows the recommendations from PEP 452 so that it can be used as a drop-in replacement to e.g. hashlib or PyCrypto.

Here are the examples from hashlib ported to python-mbedtls:

>>> from mbedtls import hash as hashlib
>>> m = hashlib.md5()
>>> m.update(b"Nobody inspects")
>>> m.update(b" the spammish repetition")
>>> m.digest()
b'\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9'
>>> m.digest_size
16
>>> m.block_size
64

More condensed:

>>> hashlib.sha224(b"Nobody inspects the spammish repetition").hexdigest()
'a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2'

Using new():

>>> h = hashlib.new('ripemd160')
>>> h.update(b"Nobody inspects the spammish repetition")
>>> h.hexdigest()
'cc4a5ce1b3df48aec5d22d1f16b894a0b894eccc'

HMAC algorithm with mbedtls.hmac

The mbedtls.hmac module computes HMAC. The API follows the recommendations from PEP 452 as well.

Example:

>>> from mbedtls import hmac
>>> m = hmac.new(b"This is my secret key", digestmod="md5")
>>> m.update(b"Nobody inspects")
>>> m.update(b" the spammish repetition")
>>> m.digest()
b'\x9d-/rj\\\x98\x80\xb1rG\x87\x0f\xe9\xe4\xeb'

Warning:

The message is cleared after calculation of the digest. Only call mbedtls.hmac.Hmac.digest() or mbedtls.hmac.Hmac.hexdigest() once per message.

Symmetric cipher with mbedtls.cipher

The mbedtls.cipher module provides symmetric encryption. The API follows the recommendations from PEP 272 so that it can be used as a drop-in replacement to e.g. PyCrypto.

mbedtls provides the following algorithms:

  • Aes encryption/decryption (128, 192, and 256 bits) in ECB, CBC, CFB128, CTR, GCM, or CCM mode;

  • Arc4 encryption/decryption;

  • Blowfish encryption/decryption in ECB, CBC, CFB64, or CTR mode;

  • Camellia encryption/decryption (128, 192, and 256 bits) in ECB, CBC, CFB128, CTR, GCM, or CCM mode;

  • DES encryption/decryption in ECB, or CBC mode;

Notes:
  • Tagging and padding are not wrapped.

  • The counter in CTR mode cannot be explicitly provided.

Example:

>>> from mbedtls import cipher
>>> c = cipher.AES.new(b"My 16-bytes key.", cipher.MODE_CBC, b"CBC needs an IV.")
>>> enc = c.encrypt(b"This is a super-secret message!")
>>> enc
b'*`k6\x98\x97=[\xdf\x7f\x88\x96\xf5\t\x19J7\x93\xb5\xe0~\t\x9e\x968m\xcd\x9c3\x04o\xe6'
>>> c.decrypt(enc)
b'This is a super-secret message!'

RSA public key with mbedtls.pk

The mbedtls.pk module provides the RSA cryptosystem. This includes:

  • Public-private key generation and key import/export in PEM and DER formats;

  • Asymmetric encryption and decryption;

  • Message signature and verification.

Key generation, the default size is 2048 bits:

>>> from mbedtls import pk
>>> rsa = pk.RSA()
>>> prv = rsa.generate()
>>> rsa.key_size
256

Message encryption and decryption:

>>> enc = rsa.encrypt(b"secret message")
>>> rsa.decrypt(enc)
b'secret message'

Message signature and verification:

>>> sig = rsa.sign(b"Please sign here.")
>>> rsa.verify(b"Please sign here.", sig)
True
>>> rsa.verify(b"Sorry, wrong message.", sig)
False
>>> pub = rsa.export_public_key(format="DER")
>>> other = pk.RSA()
>>> other.from_buffer(pub)
>>> other.verify(b"Please sign here.", sig)
True

Static and ephemeral Elliptic curve Diffie-Hellman

The mbedtls.pk module provides the ECC cryptosystem. This includes:

  • Public-private key generation and key import/export in the PEM and DER formats;

  • Asymmetric encrypt and decryption;

  • Message signature and verification;

  • Ephemeral ECDH key exchange.

get_supported_curves() returns the list of supported curves.

The API of the ECC class is the same as the API of the RSA class but ciphering (encrypt() and decrypt() is not supported by MBED TLS).

Message signature and verification—elliptic curve digital signature algorithm (ECDSA):

>>> from mbedtls import pk
>>> ecdsa = pk.ECC()
>>> prv = ecdsa.generate()
>>> sig = ecdsa.sign(b"Please sign here.")
>>> ecdsa.verify(b"Please sign here.", sig)
True
>>> ecdsa.verify(b"Sorry, wrong message.", sig)
False
>>> pub = ecdsa.export_public_key(format="DER")
>>> other = pk.ECC()
>>> other.from_buffer(pub)
>>> other.verify(b"Please sign here.", sig)
True

The classes ECDHServer and ECDHClient may be used for ephemeral ECDH. The key exchange is as follows:

>>> srv = pk.ECDHServer()
>>> cli = pk.ECDHClient()

The server generates the ServerKeyExchange encrypted payload and passes it to the client:

>>> ske = srv.generate()
>>> cli.import_SKE(ske)

then the client generates the ClientKeyExchange encrypted payload and passes it back to the server:

>>> cke = cli.generate()
>>> srv.import_CKE(cke)

Now, client and server may generate their shared secret:

>>> secret = srv.generate_secret()
>>> cli.generate_secret() == secret
True
>>> srv.shared_secret == cli.shared_secret
True

X.509 Certificate writing and parsing with mbedtls.x509

Create new X.509 certificates:

>>> import datetime as dt
>>> from pathlib import Path
>>>
>>> from mbedtls import hash as hashlib
>>> from mbedtls.pk import RSA
>>> from mbedtls.x509 import Certificate, CSR, CRL
>>>
>>> now = dt.datetime.utcnow()
>>> issuer_key = RSA()
>>> _ = issuer_key.generate()
>>> subject_key = RSA()
>>> prv = subject_key.generate()
>>>
>>> crt = Certificate.new(
...     start=now, end=now + dt.timedelta(days=90),
...     issuer="C=NL,O=PolarSSL,CN=PolarSSL Test CA", issuer_key=issuer_key,
...     subject=None, subject_key=subject_key,
...     md_alg=hashlib.sha1(), serial=None)
...
>>> csr = CSR.new(subject_key, hashlib.sha1(),
...               "C=NL,O=PolarSSL,CN=PolarSSL Server 1")
>>>

Call next(crt) to obtain the next certificate in a chain. The call raises StopIteration if there is no further certificate.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-mbedtls-0.10.0.tar.gz (27.9 kB view hashes)

Uploaded Source

Built Distributions

python_mbedtls-0.10.0-py3.6-linux-x86_64.egg (4.5 MB view hashes)

Uploaded Source

python_mbedtls-0.10.0-py3.5-linux-x86_64.egg (4.4 MB view hashes)

Uploaded Source

python_mbedtls-0.10.0-py3.4-linux-x86_64.egg (4.5 MB view hashes)

Uploaded Source

python_mbedtls-0.10.0-py2.7-linux-x86_64.egg (4.1 MB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page