Skip to main content

hash, hmac, RSA, and X.509 with an mbed TLS back end

Project description

https://circleci.com/gh/Synss/python-mbedtls/tree/develop.svg?style=svg https://travis-ci.org/Synss/python-mbedtls.svg?branch=develop https://coveralls.io/repos/github/Synss/python-mbedtls/badge.svg?branch=develop

python-mbedtls is a free cryptographic library for Python that uses mbed TLS for back end.

mbed TLS (formerly known as PolarSSL) makes it trivially easy for developers to include cryptographic and SSL/TLS capabilities in their (embedded) products, facilitating this functionality with a minimal coding footprint.

python-mbedtls API follows the recommendations from PEP 452: API for Cryptographic Hash Functions v2.0 and PEP 272 API for Block Encryption Algorithms v1.0 and can therefore be used as a drop-in replacements to PyCrypto or Python’s hashlib and hmac

License

python-mbedtls is licensed under the MIT License (see LICENSE.txt). This enables the use of python-mbedtls in both open source and closed source projects. The MIT License is compatible with both GPL and Apache 2.0 license under which mbed TLS is distributed.

Installation

The bindings are tested with Python 2.7, 3.4, 3.5, 3.6, and 3.7 on Linux and macOS.

Manylinux wheels are available for 64-bit Linux systems. Install with pip install python-mbedtls.

In other cases, or to bind to a different version of mbed TLS, clone the python-mbedtls repository, install mbed TLS, and install python-mbedtls with:

$ git clone https://github.com/Synss/python-mbedtls.git python-mbedtls.git
$ cd python-mbedtls.git
$ sudo ./scripts/install-mbedtls.sh 2.7.8
$ python -m pip install python-mbedtls

where 2.7.8 is the version of mbed TLS that will be installed.

install-mbedtl.sh is a POSIX shell script and requires curl, tar, and cmake.

Message digest with mbedtls.hash

The mbedtls.hash module provides MD5, SHA-1, SHA-2, and RIPEMD-160 secure hashes and message digests. The API follows the recommendations from PEP 452 so that it can be used as a drop-in replacement to e.g. hashlib or PyCrypto.

Here are the examples from hashlib ported to python-mbedtls:

>>> from mbedtls import hash as hashlib
>>> m = hashlib.md5()
>>> m.update(b"Nobody inspects")
>>> m.update(b" the spammish repetition")
>>> m.digest()
b'\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9'
>>> m.digest_size
16
>>> m.block_size
64

More condensed:

>>> hashlib.sha224(b"Nobody inspects the spammish repetition").hexdigest()
'a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2'

Using new():

>>> h = hashlib.new('ripemd160')
>>> h.update(b"Nobody inspects the spammish repetition")
>>> h.hexdigest()
'cc4a5ce1b3df48aec5d22d1f16b894a0b894eccc'

HMAC algorithm with mbedtls.hmac

The mbedtls.hmac module computes HMAC. The API follows the recommendations from PEP 452 as well.

Example:

>>> from mbedtls import hmac
>>> m = hmac.new(b"This is my secret key", digestmod="md5")
>>> m.update(b"Nobody inspects")
>>> m.update(b" the spammish repetition")
>>> m.digest()
b'\x9d-/rj\\\x98\x80\xb1rG\x87\x0f\xe9\xe4\xeb'

Warning:

The message is cleared after calculation of the digest. Only call mbedtls.hmac.Hmac.digest() or mbedtls.hmac.Hmac.hexdigest() once per message.

Symmetric cipher with mbedtls.cipher

The mbedtls.cipher module provides symmetric encryption. The API follows the recommendations from PEP 272 so that it can be used as a drop-in replacement to e.g. PyCrypto.

mbedtls provides the following algorithms:

  • Aes encryption/decryption (128, 192, and 256 bits) in ECB, CBC, CFB128, CTR, GCM, or CCM mode;

  • Arc4 encryption/decryption;

  • Blowfish encryption/decryption in ECB, CBC, CFB64, or CTR mode;

  • Camellia encryption/decryption (128, 192, and 256 bits) in ECB, CBC, CFB128, CTR, GCM, or CCM mode;

  • DES encryption/decryption in ECB, or CBC mode;

Notes:
  • Tagging and padding are not wrapped.

  • The counter in CTR mode cannot be explicitly provided.

Example:

>>> from mbedtls import cipher
>>> c = cipher.AES.new(b"My 16-bytes key.", cipher.MODE_CBC, b"CBC needs an IV.")
>>> enc = c.encrypt(b"This is a super-secret message!")
>>> enc
b'*`k6\x98\x97=[\xdf\x7f\x88\x96\xf5\t\x19J7\x93\xb5\xe0~\t\x9e\x968m\xcd\x9c3\x04o\xe6'
>>> c.decrypt(enc)
b'This is a super-secret message!'

RSA public key with mbedtls.pk

The mbedtls.pk module provides the RSA cryptosystem. This includes:

  • Public-private key generation and key import/export in PEM and DER formats;

  • Asymmetric encryption and decryption;

  • Message signature and verification.

Key generation, the default size is 2048 bits:

>>> from mbedtls import pk
>>> rsa = pk.RSA()
>>> prv = rsa.generate()
>>> rsa.key_size
256

Message encryption and decryption:

>>> enc = rsa.encrypt(b"secret message")
>>> rsa.decrypt(enc)
b'secret message'

Message signature and verification:

>>> sig = rsa.sign(b"Please sign here.")
>>> rsa.verify(b"Please sign here.", sig)
True
>>> rsa.verify(b"Sorry, wrong message.", sig)
False
>>> pub = rsa.export_public_key(format="DER")
>>> other = pk.RSA.from_buffer(pub)
>>> other.verify(b"Please sign here.", sig)
True

Static and ephemeral Elliptic curve Diffie-Hellman

The mbedtls.pk module provides the ECC cryptosystem. This includes:

  • Public-private key generation and key import/export in the PEM and DER formats;

  • Asymmetric encrypt and decryption;

  • Message signature and verification;

  • Ephemeral ECDH key exchange.

get_supported_curves() returns the list of supported curves.

The API of the ECC class is the same as the API of the RSA class but ciphering (encrypt() and decrypt() is not supported by MBED TLS).

Message signature and verification—elliptic curve digital signature algorithm (ECDSA):

>>> from mbedtls import pk
>>> ecdsa = pk.ECC()
>>> prv = ecdsa.generate()
>>> sig = ecdsa.sign(b"Please sign here.")
>>> ecdsa.verify(b"Please sign here.", sig)
True
>>> ecdsa.verify(b"Sorry, wrong message.", sig)
False
>>> pub = ecdsa.export_public_key(format="DER")
>>> other = pk.ECC.from_buffer(pub)
>>> other.verify(b"Please sign here.", sig)
True

The classes ECDHServer and ECDHClient may be used for ephemeral ECDH. The key exchange is as follows:

>>> srv = pk.ECDHServer()
>>> cli = pk.ECDHClient()

The server generates the ServerKeyExchange encrypted payload and passes it to the client:

>>> ske = srv.generate()
>>> cli.import_SKE(ske)

then the client generates the ClientKeyExchange encrypted payload and passes it back to the server:

>>> cke = cli.generate()
>>> srv.import_CKE(cke)

Now, client and server may generate their shared secret:

>>> secret = srv.generate_secret()
>>> cli.generate_secret() == secret
True
>>> srv.shared_secret == cli.shared_secret
True

Diffie-Hellman-Merkle key exchange

The classes DHServer and DHClient may be used for DH Key exchange. The classes have the same API as ECDHServer and ECDHClient, respectively.

The key exchange is as follow:

>>> from mbedtls.mpi import MPI
>>> from mbedtls import pk
>>> srv = pk.DHServer(MPI.prime(128), MPI.prime(96))
>>> cli = pk.DHClient(MPI.prime(128), MPI.prime(96))

The values 23 and 5 are the prime modulus (P) and the generator (G).

The server generates the ServerKeyExchange payload:

>>> ske = srv.generate()
>>> cli.import_SKE(ske)

The payload ends with G^X mod P where X is the secret value of the server.

>>> cke = cli.generate()
>>> srv.import_CKE(cke)

cke is G^Y mod P (with Y the secret value from the client) returned as its representation in bytes so that it can be readily transported over the network.

As in ECDH, client and server may now generate their shared secret:

>>> secret = srv.generate_secret()
>>> cli.generate_secret() == secret
True
>>> srv.shared_secret == cli.shared_secret
True

X.509 Certificate writing and parsing with mbedtls.x509

The x509 module can be used to parse X.509 certificates or create and verify a certificate chain.

Here, the trusted root is a self-signed CA certificate ca0_crt signed by ca0_key:

>>> import datetime as dt
>>>
>>> from mbedtls import hash as hashlib
>>> from mbedtls import pk
>>> from mbedtls import x509
>>>
>>> now = dt.datetime.utcnow()
>>> ca0_key = pk.RSA()
>>> _ = ca0_key.generate()
>>> ca0_csr = x509.CSR.new(ca0_key, "CN=Trusted CA", hashlib.sha256())
>>> ca0_crt = x509.CRT.selfsign(
...     ca0_csr, ca0_key,
...     not_before=now, not_after=now + dt.timedelta(days=90),
...     serial_number=0x123456,
...     basic_constraints=x509.BasicConstraints(True, 1))
...

An intermediate then issues a Certificate Singing Request (CSR) that the root CA signs:

>>> ca1_key = pk.ECC()
>>> _ = ca1_key.generate()
>>> ca1_csr = x509.CSR.new(ca1_key, "CN=Intermediate CA", hashlib.sha256())
>>>
>>> ca1_crt = ca0_crt.sign(
...     ca1_csr, ca0_key, now, now + dt.timedelta(days=90), 0x123456,
...     basic_constraints=x509.BasicConstraints(ca=True, max_path_length=3))
...

And finally, the intermediate CA signs a certificate for the End Entity on the basis of a new CSR:

>>> ee0_key = pk.ECC()
>>> _ = ee0_key.generate()
>>> ee0_csr = x509.CSR.new(ee0_key, "CN=End Entity", hashlib.sha256())
>>>
>>> ee0_crt = ca1_crt.sign(
...     ee0_csr, ca1_key, now, now + dt.timedelta(days=90), 0x987654)
...

The emitting certificate can be used to verify the next certificate in the chain:

>>> ca1_crt.verify(ee0_crt)
True
>>> ca0_crt.verify(ca1_crt)
True

Note, however, that this verification is only one step in a private key infrastructure and does not take CRLs, path length, etc. into account.

TLS client and server

The mbedtls.tls module provides TLS clients and servers. The API follows the recommendations of PEP 543. Note, however, that the Python standard SSL library does not follow the PEP so that this library may not be a drop-in replacement. Also, SSL 3 is not yet supported.

Here are some simple HTTP messages to pass from the client to the server and back.

>>> get_request = "\r\n".join((
...     "GET / HTTP/1.0",
...     "",
...     "")).encode("ascii")
...
>>> http_response = "\r\n".join((
...     "HTTP/1.0 200 OK",
...     "Content-Type: text/html",
...     "",
...     "<h2>Test Server</h2>",
...     "<p>Successful connection.</p>",
...     "")).encode("ascii")
...
>>> http_error = "\r\n".join((
...     "HTTP/1.0 400 Bad Request",
...     "",
...     ""))
...

For this example, the trust store just consists in the root certificate ca0_crt from the previous section.

>>> from mbedtls import tls
>>> trust_store = tls.TrustStore()
>>> trust_store.add(ca0_crt)

The next step is to configure the TLS contexts for server and client.

>>> srv_ctx = tls.ServerContext(tls.TLSConfiguration(
...     trust_store=trust_store,
...     certificate_chain=([ee0_crt, ca1_crt], ee0_key),
...     validate_certificates=False,
... ))
...
>>> cli_ctx = tls.ClientContext(tls.TLSConfiguration(
...     trust_store=trust_store,
...     validate_certificates=True,
... ))
...

The contexts are used to wrap TCP sockets.

>>> import socket
>>> srv = srv_ctx.wrap_socket(
...     socket.socket(socket.AF_INET, socket.SOCK_STREAM))
...
>>> try:
...     from contextlib import suppress
... except ImportError:
...     # For Python 2.
...     from contextlib2 import suppress
>>> def block(callback, *args, **kwargs):
...     while True:
...         with suppress(tls.WantReadError, tls.WantWriteError):
...             return callback(*args, **kwargs)
...

The server starts in its own process in this example because accept() is blocking.

>>> def server_main_loop(sock):
...     conn, addr = sock.accept()
...     block(conn.do_handshake)
...     data = conn.recv(1024)
...     if data == get_request:
...         conn.sendall(http_response)
...     else:
...         conn.sendall(http_error)
...

We only scan for free ports to bind() to in order to paralelize the tests. This should not be needed.

>>> import multiprocessing as mp
>>> for port in range(8888, 8888 + 20):
...     try:
...         srv.bind(("localhost", port))
...     except OSError:
...         pass
...     else:
...         break
... else:
...     raise OSError("No free port found")
...
>>> srv.listen(1)
>>> runner = mp.Process(target=server_main_loop, args=(srv, ))
>>> runner.start()

Finally, a client queries the server with the get_request:

>>> cli = cli_ctx.wrap_socket(
...     socket.socket(socket.AF_INET, socket.SOCK_STREAM),
...     server_hostname=None,
... )
...
>>> cli.connect(("localhost", port))
>>> block(cli.do_handshake)
>>> cli.send(get_request)
18
>>> response = block(cli.recv, 1024)
>>> print(response.decode("ascii").replace("\r\n", "\n"))
HTTP/1.0 200 OK
Content-Type: text/html
<BLANKLINE>
<h2>Test Server</h2>
<p>Successful connection.</p>
<BLANKLINE>

The last step is to stop the extra process and close the sockets.

>>> cli.close()
>>> runner.join(1.0)
>>> srv.close()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-mbedtls-0.14.0.tar.gz (48.0 kB view details)

Uploaded Source

Built Distributions

File details

Details for the file python-mbedtls-0.14.0.tar.gz.

File metadata

  • Download URL: python-mbedtls-0.14.0.tar.gz
  • Upload date:
  • Size: 48.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: devpi-server/4.8.0 (py2.7.6; linux2)

File hashes

Hashes for python-mbedtls-0.14.0.tar.gz
Algorithm Hash digest
SHA256 c7c9218aeeca63a3e6418ddd76796331517ab42e3d713d5a7b935e604e8a519c
MD5 d45f35dece32a288b913f9e47f315621
BLAKE2b-256 c1ef3e33735e3603d7af1997b7fbc75dc903b89b110dbe37869e95c5396de057

See more details on using hashes here.

File details

Details for the file python_mbedtls-0.14.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_mbedtls-0.14.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d799a2d15e3284ec7c3d817128ea4bb64712d8ce1fd69e17d1a27cd2ca3037e0
MD5 670411801d59bea51c100d3de5cdc56b
BLAKE2b-256 891613b3b61cd3105329be9b400a87d59e392787d42c63f81266c73b25a58cfd

See more details on using hashes here.

File details

Details for the file python_mbedtls-0.14.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_mbedtls-0.14.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6c3d39b433581a0fa2050a2d77ecd106766a030bd7c153d203712ebe6e5a9850
MD5 4287be4cd81e09fb00846d99d82efc88
BLAKE2b-256 82f4a542cdc77514ca06da656c8cc5a7968cd3e648c070e1c136341f13d7579d

See more details on using hashes here.

File details

Details for the file python_mbedtls-0.14.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_mbedtls-0.14.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ed005281e601a5f1ee53244fe2fdc4c4c05eebae1c75d104b334835eda0cd143
MD5 44915fe04c4e2c97e72814ad45be0c93
BLAKE2b-256 62ed462e079ebc4c395c94547c8c108747cdbadd74b01b604c1e73c005a2298f

See more details on using hashes here.

File details

Details for the file python_mbedtls-0.14.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_mbedtls-0.14.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e1f75eb840c114606557ad99550a4f32f305a27e1ab0d78befaeb6c4824425fe
MD5 1aa452d9afd47cb051a92f57dea33673
BLAKE2b-256 a131154f8941c0bc27d1a921f5b9b324098878b7bc01eecd75192612652b7c84

See more details on using hashes here.

File details

Details for the file python_mbedtls-0.14.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_mbedtls-0.14.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 86c068fc2fb7d43f8b4343256bf20daeb68ba638a534dab3d880dc3db19a84c7
MD5 dd63d70390ce0633d2ccf176261808ed
BLAKE2b-256 4ab5dbd5d5fdf505b444009310bb3c617eb6b5f0ee40473e0ef8151c95c480ea

See more details on using hashes here.

File details

Details for the file python_mbedtls-0.14.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_mbedtls-0.14.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ab85409527a11a274dd63f97334b50e47619635838882e543c7143dc21f9c72b
MD5 0bab84b4de82c6eb17e928b187191c15
BLAKE2b-256 dc117f5199477af776eec4b986c73b68b0b5dfa05d5f768aec3116723d05fcf1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page