Skip to main content

hash, hmac, RSA, and X.509 with an mbed TLS back end

Project description

https://circleci.com/gh/Synss/python-mbedtls/tree/develop.svg?style=svg https://travis-ci.org/Synss/python-mbedtls.svg?branch=develop https://coveralls.io/repos/github/Synss/python-mbedtls/badge.svg?branch=develop

python-mbedtls is a free cryptographic library for Python that uses mbed TLS for back end.

mbed TLS (formerly known as PolarSSL) makes it trivially easy for developers to include cryptographic and SSL/TLS capabilities in their (embedded) products, facilitating this functionality with a minimal coding footprint.

python-mbedtls API follows the recommendations from PEP 452: API for Cryptographic Hash Functions v2.0 and PEP 272 API for Block Encryption Algorithms v1.0 and can therefore be used as a drop-in replacements to PyCrypto or Python’s hashlib and hmac

License

python-mbedtls is licensed under the MIT License (see LICENSE.txt). This enables the use of python-mbedtls in both open source and closed source projects. The MIT License is compatible with both GPL and Apache 2.0 license under which mbed TLS is distributed.

Installation

The bindings are tested with Python 2.7, 3.4, 3.5, 3.6, and 3.7 on Linux and macOS.

Manylinux wheels are available for 64-bit Linux systems. Install with pip install python-mbedtls.

In other cases, or to bind to a different version of mbed TLS, clone the python-mbedtls repository, install mbed TLS, and install python-mbedtls with:

$ git clone https://github.com/Synss/python-mbedtls.git python-mbedtls.git
$ cd python-mbedtls.git
$ sudo ./scripts/install-mbedtls.sh 2.7.9
$ python -m pip install python-mbedtls

where 2.7.9 is the version of mbed TLS that will be installed.

install-mbedtl.sh is a POSIX shell script and requires curl, tar, and cmake.

Check which version of mbed TLS is being used by python-mbedtls

The version module shows the run-time version information to mbed TLS:

>>> from mbedtls import version
>>> _ = version.version  # "mbed TLS 2.7.9"
>>> _ = version.version_info  # (2, 7, 9)

Message digest with mbedtls.hash

The mbedtls.hash module provides MD5, SHA-1, SHA-2, and RIPEMD-160 secure hashes and message digests. The API follows the recommendations from PEP 452 so that it can be used as a drop-in replacement to e.g. hashlib or other cryptography libraries.

Here are the examples from hashlib ported to python-mbedtls:

>>> from mbedtls import hash as hashlib
>>> m = hashlib.md5()
>>> m.update(b"Nobody inspects")
>>> m.update(b" the spammish repetition")
>>> m.digest()
b'\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9'
>>> m.digest_size
16
>>> m.block_size
64

More condensed:

>>> hashlib.sha224(b"Nobody inspects the spammish repetition").hexdigest()
'a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2'

Using new():

>>> h = hashlib.new('ripemd160')
>>> h.update(b"Nobody inspects the spammish repetition")
>>> h.hexdigest()
'cc4a5ce1b3df48aec5d22d1f16b894a0b894eccc'

HMAC algorithm with mbedtls.hmac

The mbedtls.hmac module computes HMAC. The API follows the recommendations from PEP 452 as well.

Example:

>>> from mbedtls import hmac
>>> m = hmac.new(b"This is my secret key", digestmod="md5")
>>> m.update(b"Nobody inspects")
>>> m.update(b" the spammish repetition")
>>> m.digest()
b'\x9d-/rj\\\x98\x80\xb1rG\x87\x0f\xe9\xe4\xeb'

Warning:

The message is cleared after calculation of the digest. Only call mbedtls.hmac.Hmac.digest() or mbedtls.hmac.Hmac.hexdigest() once per message.

HMAC-based key derivation functino (HKDF) with mbedtls.hkdf

The mbedtls.hkdf module exposes extract-and-expand key derivation functions. The main function is hkdf() but extract() and expand() may be used as well.

Example:

>>> from mbedtls import hkdf
>>> hkdf.hkdf(
...     b"my secret key",
...     length=42,
...     info=b"my cool app",
...     salt=b"and pepper",
...     digestmod=hmac.sha256
... )
b'v,\xef\x90\xccU\x1d\x1b\xd7\\a\xaf\x92\xac\n\x90\xf9q\xf4)\xcd"\xf7\x1a\x94p\x03.\xa8e\x1e\xfb\x92\xe8l\x0cc\xf8e\rvj'

where info, salt, and digestmod are optional, although providing (at least) info is largely recommended.

Symmetric cipher with mbedtls.cipher

The mbedtls.cipher module provides symmetric encryption. The API follows the recommendations from PEP 272 so that it can be used as a drop-in replacement to other libraries.

mbedtls provides the following algorithms:

  • AES encryption/decryption (128, 192, and 256 bits) in ECB, CBC, CFB128, CTR, OFB, or XTS mode;

  • AES AEAD (128, 192, and 256 bits) in GCM, or CCM mode;

  • ARC4 encryption/decryption;

  • ARIA encryption/decryption (128, 192, and 256 bits) in ECB, CBC, CTR, or GCM modes;

  • Blowfish encryption/decryption in ECB, CBC, CFB64, or CTR mode;

  • Camellia encryption/decryption (128, 192, and 256 bits) in ECB, CBC, CFB128, CTR, or GCM mode;

  • DES, DES3, and double DES3 encryption/decryption in ECB, or CBC mode;

  • CHACHA20 and CHACHA0/POLY1305 encryption/decryption.

Notes:
  • Tagging and padding are not wrapped.

  • The counter in CTR mode cannot be explicitly provided.

Example:

>>> from mbedtls import cipher
>>> c = cipher.AES.new(b"My 16-bytes key.", cipher.MODE_CBC, b"CBC needs an IV.")
>>> enc = c.encrypt(b"This is a super-secret message!")
>>> enc
b'*`k6\x98\x97=[\xdf\x7f\x88\x96\xf5\t\x19J7\x93\xb5\xe0~\t\x9e\x968m\xcd\x9c3\x04o\xe6'
>>> c.decrypt(enc)
b'This is a super-secret message!'

RSA public key with mbedtls.pk

The mbedtls.pk module provides the RSA cryptosystem. This includes:

  • Public-private key generation and key import/export in PEM and DER formats;

  • Asymmetric encryption and decryption;

  • Message signature and verification.

Key generation, the default size is 2048 bits:

>>> from mbedtls import pk
>>> rsa = pk.RSA()
>>> prv = rsa.generate()
>>> rsa.key_size
256

Message encryption and decryption:

>>> enc = rsa.encrypt(b"secret message")
>>> rsa.decrypt(enc)
b'secret message'

Message signature and verification:

>>> sig = rsa.sign(b"Please sign here.")
>>> rsa.verify(b"Please sign here.", sig)
True
>>> rsa.verify(b"Sorry, wrong message.", sig)
False
>>> pub = rsa.export_public_key(format="DER")
>>> other = pk.RSA.from_buffer(pub)
>>> other.verify(b"Please sign here.", sig)
True

Static and ephemeral Elliptic curve Diffie-Hellman

The mbedtls.pk module provides the ECC cryptosystem. This includes:

  • Public-private key generation and key import/export in the PEM and DER formats;

  • Asymmetric encrypt and decryption;

  • Message signature and verification;

  • Ephemeral ECDH key exchange.

get_supported_curves() returns the list of supported curves.

The API of the ECC class is the same as the API of the RSA class but ciphering (encrypt() and decrypt() is not supported by MBED TLS).

Message signature and verification—elliptic curve digital signature algorithm (ECDSA):

>>> from mbedtls import pk
>>> ecdsa = pk.ECC()
>>> prv = ecdsa.generate()
>>> sig = ecdsa.sign(b"Please sign here.")
>>> ecdsa.verify(b"Please sign here.", sig)
True
>>> ecdsa.verify(b"Sorry, wrong message.", sig)
False
>>> pub = ecdsa.export_public_key(format="DER")
>>> other = pk.ECC.from_buffer(pub)
>>> other.verify(b"Please sign here.", sig)
True

The classes ECDHServer and ECDHClient may be used for ephemeral ECDH. The key exchange is as follows:

>>> ecdh_srv = pk.ECDHServer()
>>> ecdh_cli = pk.ECDHClient()

The server generates the ServerKeyExchange encrypted payload and passes it to the client:

>>> ske = ecdh_srv.generate()
>>> ecdh_cli.import_SKE(ske)

then the client generates the ClientKeyExchange encrypted payload and passes it back to the server:

>>> cke = ecdh_cli.generate()
>>> ecdh_srv.import_CKE(cke)

Now, client and server may generate their shared secret:

>>> secret = ecdh_srv.generate_secret()
>>> ecdh_cli.generate_secret() == secret
True
>>> ecdh_srv.shared_secret == ecdh_cli.shared_secret
True

Diffie-Hellman-Merkle key exchange

The classes DHServer and DHClient may be used for DH Key exchange. The classes have the same API as ECDHServer and ECDHClient, respectively.

The key exchange is as follow:

>>> from mbedtls.mpi import MPI
>>> from mbedtls import pk
>>> dh_srv = pk.DHServer(MPI.prime(128), MPI.prime(96))
>>> dh_cli = pk.DHClient(MPI.prime(128), MPI.prime(96))

The 128-bytes prime and the 96-bytes prime are the modulus (P) and the generator (G).

The server generates the ServerKeyExchange payload:

>>> ske = dh_srv.generate()
>>> dh_cli.import_SKE(ske)

The payload ends with G^X mod P where X is the secret value of the server.

>>> cke = dh_cli.generate()
>>> dh_srv.import_CKE(cke)

cke is G^Y mod P (with Y the secret value from the client) returned as its representation in bytes so that it can be readily transported over the network.

As in ECDH, client and server may now generate their shared secret:

>>> secret = dh_srv.generate_secret()
>>> dh_cli.generate_secret() == secret
True
>>> dh_srv.shared_secret == dh_cli.shared_secret
True

X.509 Certificate writing and parsing with mbedtls.x509

The x509 module can be used to parse X.509 certificates or create and verify a certificate chain.

Here, the trusted root is a self-signed CA certificate ca0_crt signed by ca0_key:

>>> import datetime as dt
>>>
>>> from mbedtls import hash as hashlib
>>> from mbedtls import pk
>>> from mbedtls import x509
>>>
>>> now = dt.datetime.utcnow()
>>> ca0_key = pk.RSA()
>>> _ = ca0_key.generate()
>>> ca0_csr = x509.CSR.new(ca0_key, "CN=Trusted CA", hashlib.sha256())
>>> ca0_crt = x509.CRT.selfsign(
...     ca0_csr, ca0_key,
...     not_before=now, not_after=now + dt.timedelta(days=90),
...     serial_number=0x123456,
...     basic_constraints=x509.BasicConstraints(True, 1))
...

An intermediate then issues a Certificate Singing Request (CSR) that the root CA signs:

>>> ca1_key = pk.ECC()
>>> _ = ca1_key.generate()
>>> ca1_csr = x509.CSR.new(ca1_key, "CN=Intermediate CA", hashlib.sha256())
>>>
>>> ca1_crt = ca0_crt.sign(
...     ca1_csr, ca0_key, now, now + dt.timedelta(days=90), 0x123456,
...     basic_constraints=x509.BasicConstraints(ca=True, max_path_length=3))
...

And finally, the intermediate CA signs a certificate for the End Entity on the basis of a new CSR:

>>> ee0_key = pk.ECC()
>>> _ = ee0_key.generate()
>>> ee0_csr = x509.CSR.new(ee0_key, "CN=End Entity", hashlib.sha256())
>>>
>>> ee0_crt = ca1_crt.sign(
...     ee0_csr, ca1_key, now, now + dt.timedelta(days=90), 0x987654)
...

The emitting certificate can be used to verify the next certificate in the chain:

>>> ca1_crt.verify(ee0_crt)
True
>>> ca0_crt.verify(ca1_crt)
True

Note, however, that this verification is only one step in a private key infrastructure and does not take CRLs, path length, etc. into account.

TLS client and server

The mbedtls.tls module provides TLS clients and servers. The API follows the recommendations of PEP 543. Note, however, that the Python standard SSL library does not follow the PEP so that this library may not be a drop-in replacement. Also, SSL 3 is not yet supported.

Here are some simple HTTP messages to pass from the client to the server and back.

>>> get_request = "\r\n".join((
...     "GET / HTTP/1.0",
...     "",
...     "")).encode("ascii")
...
>>> http_response = "\r\n".join((
...     "HTTP/1.0 200 OK",
...     "Content-Type: text/html",
...     "",
...     "<h2>Test Server</h2>",
...     "<p>Successful connection.</p>",
...     "")).encode("ascii")
...
>>> http_error = "\r\n".join((
...     "HTTP/1.0 400 Bad Request",
...     "",
...     ""))
...

For this example, the trust store just consists in the root certificate ca0_crt from the previous section.

>>> from mbedtls import tls
>>> trust_store = tls.TrustStore()
>>> trust_store.add(ca0_crt)

The next step is to configure the TLS contexts for server and client.

>>> tls_srv_ctx = tls.ServerContext(tls.TLSConfiguration(
...     trust_store=trust_store,
...     certificate_chain=([ee0_crt, ca1_crt], ee0_key),
...     validate_certificates=False,
... ))
...
>>> tls_cli_ctx = tls.ClientContext(tls.TLSConfiguration(
...     trust_store=trust_store,
...     validate_certificates=True,
... ))
...

The contexts are used to wrap TCP sockets.

>>> import socket
>>> tls_srv = tls_srv_ctx.wrap_socket(
...     socket.socket(socket.AF_INET, socket.SOCK_STREAM)
... )
...
>>> from contextlib import suppress
>>> def block(callback, *args, **kwargs):
...     while True:
...         with suppress(tls.WantReadError, tls.WantWriteError):
...             return callback(*args, **kwargs)
...

The server starts in its own process in this example because accept() is blocking.

>>> def server_main_loop(sock):
...     conn, addr = sock.accept()
...     block(conn.do_handshake)
...     data = conn.recv(1024)
...     if data == get_request:
...         conn.sendall(http_response)
...     else:
...         conn.sendall(http_error)
...
>>> port = 4433
>>> tls_srv.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
>>> tls_srv.bind(("0.0.0.0", port))
>>> tls_srv.listen(1)
>>> import multiprocessing as mp
>>> runner = mp.Process(target=server_main_loop, args=(tls_srv, ))
>>> runner.start()

Finally, a client queries the server with the get_request:

>>> tls_cli = tls_cli_ctx.wrap_socket(
...     socket.socket(socket.AF_INET, socket.SOCK_STREAM),
...     server_hostname=None,
... )
...
>>> tls_cli.connect(("localhost", port))
>>> block(tls_cli.do_handshake)
>>> tls_cli.send(get_request)
18
>>> response = block(tls_cli.recv, 1024)
>>> print(response.decode("ascii").replace("\r\n", "\n"))
HTTP/1.0 200 OK
Content-Type: text/html
<BLANKLINE>
<h2>Test Server</h2>
<p>Successful connection.</p>
<BLANKLINE>

The last step is to stop the extra process and close the sockets.

>>> tls_cli.close()
>>> runner.join(1.0)
>>> tls_srv.close()

DTLS client and server

The mbedtls.tls module further provides DTLS (encrypted UDP traffic). Client and server must be bound and connected for the handshake so that DTLS should use recv() and send() as well.

The example reuses the certificate and trust store from the TLS example. However server and client are now initialized with DTLSConfiguration instances instead of TLSConfiguration.

>>> dtls_srv_ctx = tls.ServerContext(tls.DTLSConfiguration(
...     trust_store=trust_store,
...     certificate_chain=([ee0_crt, ca1_crt], ee0_key),
...     validate_certificates=False,
... ))
...
>>> dtls_cli_ctx = tls.ClientContext(tls.DTLSConfiguration(
...     trust_store=trust_store,
...     validate_certificates=True,
... ))

The DTLS contexts can now wrap UDP sockets.

>>> dtls_srv = dtls_srv_ctx.wrap_socket(
...     socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
... )
...

Here again, the accept() method blocks until the server receives a datagram. The DTLS server handshake is performed in two steps. The first handshake is interrupted by an HelloVerifyRequest exception. The server should then set a client-specific cookie and resume the handshake. The second step of the handshake should succeed.

>>> def dtls_server_main_loop(sock):
...     """A simple DTLS echo server."""
...     conn, addr = sock.accept()
...     conn.setcookieparam(addr[0].encode())
...     with suppress(tls.HelloVerifyRequest):
...        block(conn.do_handshake)
...     conn, addr = conn.accept()
...     conn.setcookieparam(addr[0].encode())
...     block(conn.do_handshake)
...     data = conn.recv(4096)
...     conn.send(data)
...
>>> port = 4443
>>> dtls_srv.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
>>> dtls_srv.bind(("0.0.0.0", port))

In contrast with TCP (TLS), there is not call to listen() for UDP.

>>> runner = mp.Process(target=dtls_server_main_loop, args=(dtls_srv, ))
>>> runner.start()

The DTLS client is mostly identical to the TLS client:

>>> dtls_cli = dtls_cli_ctx.wrap_socket(
...     socket.socket(socket.AF_INET, socket.SOCK_DGRAM),
...     server_hostname=None,
... )
>>> dtls_cli.connect(("localhost", port))
>>> block(dtls_cli.do_handshake)
>>> DATAGRAM = b"hello datagram"
>>> block(dtls_cli.send, DATAGRAM)
14
>>> block(dtls_cli.recv, 4096)
b'hello datagram'

Now, the DTLS communication is complete.

>>> dtls_cli.close()
>>> runner.join(0.1)
>>> dtls_srv.close()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-mbedtls-0.17.0.tar.gz (55.8 kB view details)

Uploaded Source

Built Distributions

python_mbedtls-0.17.0-cp27-cp27mu-manylinux1_x86_64.whl (6.9 MB view details)

Uploaded CPython 2.7mu

File details

Details for the file python-mbedtls-0.17.0.tar.gz.

File metadata

  • Download URL: python-mbedtls-0.17.0.tar.gz
  • Upload date:
  • Size: 55.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: devpi-server/4.8.0 (py2.7.6; linux2)

File hashes

Hashes for python-mbedtls-0.17.0.tar.gz
Algorithm Hash digest
SHA256 8d4bde6604dac2f01018e8c8ff0384d9f63a4ba0a4505cfe460679fe17d6128c
MD5 722e4dbe1e226250cf25a98d13c872ce
BLAKE2b-256 e47787c3822f97da9a8d195f530eeee16a140a867ad4d403e9cadba6ebf50ede

See more details on using hashes here.

File details

Details for the file python_mbedtls-0.17.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_mbedtls-0.17.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 27c60982c9478113cb2169653a775aa00465c67f20776a1abd2a22e1ebb2fb70
MD5 9c48f667c27dbfe14cd07099af3182d3
BLAKE2b-256 6ff9396c76327db6865f30c47319fe105730707e2fcb63e8f0d5dc33790c7d93

See more details on using hashes here.

File details

Details for the file python_mbedtls-0.17.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_mbedtls-0.17.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 95b000250050e22af0db8cc7be990ab619b8856ed5c57ae520f5d1453f0360ef
MD5 f1a226b111be5c1c3a3295edf647a5a2
BLAKE2b-256 6ace071a362617ab43f154055c8141c5852d82143c00cf66299b95878fc458f9

See more details on using hashes here.

File details

Details for the file python_mbedtls-0.17.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_mbedtls-0.17.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f1e8617422ffbe23c4f662ee1cac67fe95d34693fa84cb0586d5523788a28961
MD5 065c01236513818ed9583f91241965e6
BLAKE2b-256 cc78fe6a4bf40dc64bd6d93acc1aa38e5ef04dc3f78f881c4d7e5482bdef7657

See more details on using hashes here.

File details

Details for the file python_mbedtls-0.17.0-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_mbedtls-0.17.0-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0b54281c942b5af5dd01bae514e5884e7fc70c16542aefe2d665440a42997666
MD5 d3dfa15bfaab2c59a876606cbdf36386
BLAKE2b-256 2243a76f9c447697593d3afd03f4061ca36c96756e06f9432046a0e6b820adc5

See more details on using hashes here.

File details

Details for the file python_mbedtls-0.17.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_mbedtls-0.17.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3ccd6d896cf5ac6948c0d1a4d7d08916d3c61b33d05d8e93be92857b6ab2e1c3
MD5 76fd9b9512e267252432bd2ed79dc679
BLAKE2b-256 0635eae79baf8055b352c499e0a11dcd1950c8d90c5f9daefe69b0c2a2e6eddf

See more details on using hashes here.

File details

Details for the file python_mbedtls-0.17.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_mbedtls-0.17.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e675199c9b7a6813964dfa8b5f7dd182584b6deca987167731c270cdec8fc45b
MD5 4ee1baab2f6502a703d0e52ec4cd3b3b
BLAKE2b-256 0aeaf1bad36ebd27ab60ca5a5c105e429d4929144edaef187b4a15d2f3656291

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page