Skip to main content

hash, hmac, RSA, ECC, X.509, TLS, DTLS, handshakes, and secrets with an mbed TLS back end

Project description

https://circleci.com/gh/Synss/python-mbedtls/tree/develop.svg?style=svg https://travis-ci.org/Synss/python-mbedtls.svg?branch=develop https://coveralls.io/repos/github/Synss/python-mbedtls/badge.svg?branch=master

python-mbedtls is a free cryptographic library for Python that uses mbed TLS for back end.

mbed TLS (formerly known as PolarSSL) makes it trivially easy for developers to include cryptographic and SSL/TLS capabilities in their (embedded) products, facilitating this functionality with a minimal coding footprint.

python-mbedtls API follows the recommendations from:

  • PEP 272 – API for Block Encryption Algorithms v1.0

  • PEP 452 – API for Cryptographic Hash Functions v2.0

  • PEP 506 – Adding a Secret Module to the Standard Library

  • PEP 543 – A Unified TLS API for Python

and therefore plays well with the cryptographic services from the Python standard library and many other cryptography libraries as well.

License

python-mbedtls is licensed under the MIT License (see LICENSE.txt). This enables the use of python-mbedtls in both open source and closed source projects. The MIT License is compatible with both GPL and Apache 2.0 license under which mbed TLS is distributed.

API documentation

https://synss.github.io/python-mbedtls/

Installation

The bindings are tested with Python 2.7, 3.4, 3.5, 3.6, and 3.7 on Linux and macOS.

manylinux1 wheels are available for 64-bit Linux systems. Install with pip install python-mbedtls.

Usage and examples

Now, let us see examples using the various parts of the library.

Check which version of mbed TLS is being used by python-mbedtls

The mbedtls.version module shows the run-time version information to mbed TLS.

>>> from mbedtls import version
>>> _ = version.version  # "mbed TLS 2.16.1"
>>> _ = version.version_info  # (2, 16, 1)

Message digest

The mbedtls.hash module supports MD5, SHA-1, SHA-2 (in 224, 256, 384, and 512-bits), and RIPEMD-160 secure hashes and message digests.

Here are the examples from hashlib ported to python-mbedtls:

>>> from mbedtls import hash as hashlib
>>> m = hashlib.md5()
>>> m.update(b"Nobody inspects")
>>> m.update(b" the spammish repetition")
>>> m.digest()
b'\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9'
>>> m.digest_size
16
>>> m.block_size
64

More condensed:

>>> hashlib.sha224(b"Nobody inspects the spammish repetition").hexdigest()
'a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2'

Using new():

>>> h = hashlib.new('ripemd160')
>>> h.update(b"Nobody inspects the spammish repetition")
>>> h.hexdigest()
'cc4a5ce1b3df48aec5d22d1f16b894a0b894eccc'

HMAC algorithm

The mbedtls.hmac module computes HMAC.

Example:

>>> from mbedtls import hmac
>>> m = hmac.new(b"This is my secret key", digestmod="md5")
>>> m.update(b"Nobody inspects")
>>> m.update(b" the spammish repetition")
>>> m.digest()
b'\x9d-/rj\\\x98\x80\xb1rG\x87\x0f\xe9\xe4\xeb'

Warning:

The message is cleared after calculation of the digest. Only call mbedtls.hmac.Hmac.digest() or mbedtls.hmac.Hmac.hexdigest() once per message.

HMAC-based key derivation function (HKDF)

The mbedtls.hkdf module exposes extract-and-expand key derivation functions. The main function is hkdf() but extract() and expand() may be used as well.

Example:

>>> from mbedtls import hkdf
>>> hkdf.hkdf(
...     b"my secret key",
...     length=42,
...     info=b"my cool app",
...     salt=b"and pepper",
...     digestmod=hmac.sha256
... )
b'v,\xef\x90\xccU\x1d\x1b\xd7\\a\xaf\x92\xac\n\x90\xf9q\xf4)\xcd"\xf7\x1a\x94p\x03.\xa8e\x1e\xfb\x92\xe8l\x0cc\xf8e\rvj'

where info, salt, and digestmod are optional, although providing (at least) info is largely recommended.

Symmetric cipher

The mbedtls.cipher module provides symmetric encryption. The API follows the recommendations from PEP 272 so that it can be used as a drop-in replacement to other libraries.

python-mbedtls provides the following algorithms:

  • AES encryption/decryption (128, 192, and 256 bits) in ECB, CBC, CFB128, CTR, OFB, or XTS mode;

  • AES AEAD (128, 192, and 256 bits) in GCM, or CCM mode;

  • ARC4 encryption/decryption;

  • ARIA encryption/decryption (128, 192, and 256 bits) in ECB, CBC, CTR, or GCM modes;

  • Blowfish encryption/decryption in ECB, CBC, CFB64, or CTR mode;

  • Camellia encryption/decryption (128, 192, and 256 bits) in ECB, CBC, CFB128, CTR, or GCM mode;

  • DES, DES3, and double DES3 encryption/decryption in ECB, or CBC mode;

  • CHACHA20 and CHACHA0/POLY1305 encryption/decryption.

Example:

>>> from mbedtls import cipher
>>> c = cipher.AES.new(b"My 16-bytes key.", cipher.MODE_CBC, b"CBC needs an IV.")
>>> enc = c.encrypt(b"This is a super-secret message!")
>>> enc
b'*`k6\x98\x97=[\xdf\x7f\x88\x96\xf5\t\x19J7\x93\xb5\xe0~\t\x9e\x968m\xcd\x9c3\x04o\xe6'
>>> c.decrypt(enc)
b'This is a super-secret message!'

RSA public key

The mbedtls.pk module provides the RSA cryptosystem. This includes:

  • Public-private key generation and key import/export in PEM and DER formats;

  • asymmetric encryption and decryption;

  • message signature and verification.

Key generation, the default size is 2048 bits:

>>> from mbedtls import pk
>>> rsa = pk.RSA()
>>> prv = rsa.generate()
>>> rsa.key_size
256

Message encryption and decryption:

>>> enc = rsa.encrypt(b"secret message")
>>> rsa.decrypt(enc)
b'secret message'

Message signature and verification:

>>> sig = rsa.sign(b"Please sign here.")
>>> rsa.verify(b"Please sign here.", sig)
True
>>> rsa.verify(b"Sorry, wrong message.", sig)
False
>>> pub = rsa.export_public_key(format="DER")
>>> other = pk.RSA.from_buffer(pub)
>>> other.verify(b"Please sign here.", sig)
True

Static and ephemeral Elliptic curve Diffie-Hellman

The mbedtls.pk module provides the ECC cryptosystem. This includes:

  • Public-private key generation and key import/export in the PEM and DER formats;

  • asymmetric encrypt and decryption;

  • message signature and verification;

  • ephemeral ECDH key exchange.

get_supported_curves() returns the list of supported curves.

The API of the ECC class is the same as the API of the RSA class but ciphering (encrypt() and decrypt() is not supported by Mbed TLS).

Message signature and verification—elliptic curve digital signature algorithm (ECDSA):

>>> from mbedtls import pk
>>> ecdsa = pk.ECC()
>>> prv = ecdsa.generate()
>>> sig = ecdsa.sign(b"Please sign here.")
>>> ecdsa.verify(b"Please sign here.", sig)
True
>>> ecdsa.verify(b"Sorry, wrong message.", sig)
False
>>> pub = ecdsa.export_public_key(format="DER")
>>> other = pk.ECC.from_buffer(pub)
>>> other.verify(b"Please sign here.", sig)
True

The classes ECDHServer and ECDHClient may be used for ephemeral ECDH. The key exchange is as follows:

>>> ecdh_srv = pk.ECDHServer()
>>> ecdh_cli = pk.ECDHClient()

The server generates the ServerKeyExchange encrypted payload and passes it to the client:

>>> ske = ecdh_srv.generate()
>>> ecdh_cli.import_SKE(ske)

then the client generates the ClientKeyExchange encrypted payload and passes it back to the server:

>>> cke = ecdh_cli.generate()
>>> ecdh_srv.import_CKE(cke)

Now, client and server may generate their shared secret:

>>> secret = ecdh_srv.generate_secret()
>>> ecdh_cli.generate_secret() == secret
True
>>> ecdh_srv.shared_secret == ecdh_cli.shared_secret
True

Diffie-Hellman-Merkle key exchange

The classes DHServer and DHClient may be used for DH Key exchange. The classes have the same API as ECDHServer and ECDHClient, respectively.

The key exchange is as follow:

>>> from mbedtls.mpi import MPI
>>> from mbedtls import pk
>>> dh_srv = pk.DHServer(MPI.prime(128), MPI.prime(96))
>>> dh_cli = pk.DHClient(MPI.prime(128), MPI.prime(96))

The 128-bytes prime and the 96-bytes prime are the modulus P and the generator G.

The server generates the ServerKeyExchange payload:

>>> ske = dh_srv.generate()
>>> dh_cli.import_SKE(ske)

The payload ends with G^X mod P where X is the secret value of the server.

>>> cke = dh_cli.generate()
>>> dh_srv.import_CKE(cke)

cke is G^Y mod P (with Y the secret value from the client) returned as its representation in bytes so that it can be readily transported over the network.

As in ECDH, client and server may now generate their shared secret:

>>> secret = dh_srv.generate_secret()
>>> dh_cli.generate_secret() == secret
True
>>> dh_srv.shared_secret == dh_cli.shared_secret
True

X.509 Certificate writing and parsing

The mbedtls.x509 module can be used to parse X.509 certificates or create and verify a certificate chain.

Here, the trusted root is a self-signed CA certificate ca0_crt signed by ca0_key.

>>> import datetime as dt
>>>
>>> from mbedtls import hash as hashlib
>>> from mbedtls import pk
>>> from mbedtls import x509
>>>
>>> now = dt.datetime.utcnow()
>>> ca0_key = pk.RSA()
>>> _ = ca0_key.generate()
>>> ca0_csr = x509.CSR.new(ca0_key, "CN=Trusted CA", hashlib.sha256())
>>> ca0_crt = x509.CRT.selfsign(
...     ca0_csr, ca0_key,
...     not_before=now, not_after=now + dt.timedelta(days=90),
...     serial_number=0x123456,
...     basic_constraints=x509.BasicConstraints(True, 1))
...

An intermediate then issues a Certificate Singing Request (CSR) that the root CA signs:

>>> ca1_key = pk.ECC()
>>> _ = ca1_key.generate()
>>> ca1_csr = x509.CSR.new(ca1_key, "CN=Intermediate CA", hashlib.sha256())
>>>
>>> ca1_crt = ca0_crt.sign(
...     ca1_csr, ca0_key, now, now + dt.timedelta(days=90), 0x123456,
...     basic_constraints=x509.BasicConstraints(ca=True, max_path_length=3))
...

And finally, the intermediate CA signs a certificate for the End Entity on the basis of a new CSR:

>>> ee0_key = pk.ECC()
>>> _ = ee0_key.generate()
>>> ee0_csr = x509.CSR.new(ee0_key, "CN=End Entity", hashlib.sha256())
>>>
>>> ee0_crt = ca1_crt.sign(
...     ee0_csr, ca1_key, now, now + dt.timedelta(days=90), 0x987654)
...

The emitting certificate can be used to verify the next certificate in the chain:

>>> ca1_crt.verify(ee0_crt)
True
>>> ca0_crt.verify(ca1_crt)
True

Note, however, that this verification is only one step in a private key infrastructure and does not take CRLs, path length, etc. into account.

TLS client and server

The mbedtls.tls module provides TLS clients and servers. The API follows the recommendations of PEP 543. Note, however, that the Python standard SSL library does not follow the PEP so that this library may not be a drop-in replacement.

Here are some simple HTTP messages to pass from the client to the server and back.

>>> get_request = "\r\n".join((
...     "GET / HTTP/1.0",
...     "",
...     "")).encode("ascii")
...
>>> http_response = "\r\n".join((
...     "HTTP/1.0 200 OK",
...     "Content-Type: text/html",
...     "",
...     "<h2>Test Server</h2>",
...     "<p>Successful connection.</p>",
...     "")).encode("ascii")
...
>>> http_error = "\r\n".join((
...     "HTTP/1.0 400 Bad Request",
...     "",
...     ""))
...

For this example, the trust store just consists in the root certificate ca0_crt from the previous section.

>>> from mbedtls import tls
>>> trust_store = tls.TrustStore()
>>> trust_store.add(ca0_crt)

The next step is to configure the TLS contexts for server and client.

>>> tls_srv_ctx = tls.ServerContext(tls.TLSConfiguration(
...     trust_store=trust_store,
...     certificate_chain=([ee0_crt, ca1_crt], ee0_key),
...     validate_certificates=False,
... ))
...
>>> tls_cli_ctx = tls.ClientContext(tls.TLSConfiguration(
...     trust_store=trust_store,
...     validate_certificates=True,
... ))
...

The contexts are used to wrap TCP sockets.

>>> import socket
>>> tls_srv = tls_srv_ctx.wrap_socket(
...     socket.socket(socket.AF_INET, socket.SOCK_STREAM)
... )
...
>>> from contextlib import suppress
>>> def block(callback, *args, **kwargs):
...     while True:
...         with suppress(tls.WantReadError, tls.WantWriteError):
...             return callback(*args, **kwargs)
...

The server starts in its own process in this example because accept() is blocking.

>>> def server_main_loop(sock):
...     conn, addr = sock.accept()
...     block(conn.do_handshake)
...     data = conn.recv(1024)
...     if data == get_request:
...         conn.sendall(http_response)
...     else:
...         conn.sendall(http_error)
...
>>> port = 4433
>>> tls_srv.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
>>> tls_srv.bind(("0.0.0.0", port))
>>> tls_srv.listen(1)
>>> import multiprocessing as mp
>>> runner = mp.Process(target=server_main_loop, args=(tls_srv, ))
>>> runner.start()

Finally, a client queries the server with the get_request:

>>> tls_cli = tls_cli_ctx.wrap_socket(
...     socket.socket(socket.AF_INET, socket.SOCK_STREAM),
...     server_hostname=None,
... )
...
>>> tls_cli.connect(("localhost", port))
>>> block(tls_cli.do_handshake)
>>> tls_cli.send(get_request)
18
>>> response = block(tls_cli.recv, 1024)
>>> print(response.decode("ascii").replace("\r\n", "\n"))
HTTP/1.0 200 OK
Content-Type: text/html
<BLANKLINE>
<h2>Test Server</h2>
<p>Successful connection.</p>
<BLANKLINE>

The last step is to stop the extra process and close the sockets.

>>> tls_cli.close()
>>> runner.join(1.0)
>>> tls_srv.close()

DTLS client and server

The mbedtls.tls module further provides DTLS (encrypted UDP traffic). Client and server must be bound and connected for the handshake so that DTLS should use recv() and send() as well.

The example reuses the certificate and trust store from the TLS example. However server and client are now initialized with DTLSConfiguration instances instead of TLSConfiguration.

>>> dtls_srv_ctx = tls.ServerContext(tls.DTLSConfiguration(
...     trust_store=trust_store,
...     certificate_chain=([ee0_crt, ca1_crt], ee0_key),
...     validate_certificates=False,
... ))
...
>>> dtls_cli_ctx = tls.ClientContext(tls.DTLSConfiguration(
...     trust_store=trust_store,
...     validate_certificates=True,
... ))

The DTLS contexts can now wrap UDP sockets.

>>> dtls_srv = dtls_srv_ctx.wrap_socket(
...     socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
... )
...

Here again, the accept() method blocks until the server receives a datagram. The DTLS server handshake is performed in two steps. The first handshake is interrupted by an HelloVerifyRequest exception. The server should then set a client-specific cookie and resume the handshake. The second step of the handshake should succeed.

>>> def dtls_server_main_loop(sock):
...     """A simple DTLS echo server."""
...     conn, addr = sock.accept()
...     conn.setcookieparam(addr[0].encode())
...     with suppress(tls.HelloVerifyRequest):
...        block(conn.do_handshake)
...     conn, addr = conn.accept()
...     conn.setcookieparam(addr[0].encode())
...     block(conn.do_handshake)
...     data = conn.recv(4096)
...     conn.send(data)
...
>>> port = 4443
>>> dtls_srv.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
>>> dtls_srv.bind(("0.0.0.0", port))

In contrast with TCP (TLS), there is not call to listen() for UDP.

>>> runner = mp.Process(target=dtls_server_main_loop, args=(dtls_srv, ))
>>> runner.start()

The DTLS client is mostly identical to the TLS client:

>>> dtls_cli = dtls_cli_ctx.wrap_socket(
...     socket.socket(socket.AF_INET, socket.SOCK_DGRAM),
...     server_hostname=None,
... )
>>> dtls_cli.connect(("localhost", port))
>>> block(dtls_cli.do_handshake)
>>> DATAGRAM = b"hello datagram"
>>> block(dtls_cli.send, DATAGRAM)
14
>>> block(dtls_cli.recv, 4096)
b'hello datagram'

Now, the DTLS communication is complete.

>>> dtls_cli.close()
>>> runner.join(0.1)
>>> dtls_srv.close()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-mbedtls-0.18.2.tar.gz (117.5 kB view details)

Uploaded Source

Built Distributions

python_mbedtls-0.18.2-cp27-cp27mu-manylinux1_x86_64.whl (4.4 MB view details)

Uploaded CPython 2.7mu

File details

Details for the file python-mbedtls-0.18.2.tar.gz.

File metadata

  • Download URL: python-mbedtls-0.18.2.tar.gz
  • Upload date:
  • Size: 117.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: devpi-server/4.9.0 (py2.7.6; linux2)

File hashes

Hashes for python-mbedtls-0.18.2.tar.gz
Algorithm Hash digest
SHA256 d6de32ef271080011a97e5dd68a54d313ef0ad3c3403afdbf4bfa57751e5fd6b
MD5 1713ee119209b32d80d8b30e376d4fc8
BLAKE2b-256 94ad1c00675ab9440a63cbb71fdc6fba2999299a4048cca8cb95d2649a21febd

See more details on using hashes here.

File details

Details for the file python_mbedtls-0.18.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_mbedtls-0.18.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 260d30e3097bd75e04eacae82e68fe67de9727fad749cfdb670e2558686b060b
MD5 71e3befb593a1930303d5864c14755c2
BLAKE2b-256 4a8fb4505ed63aa33e421127c279a66b02a5faef849c87f6c6fb430053bc9c69

See more details on using hashes here.

File details

Details for the file python_mbedtls-0.18.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_mbedtls-0.18.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a1a5fccf070f3bcb2f8a56177edf4c7d5c9c871d9f25406d4545c6ab0780c4d7
MD5 addfb1a14417dd3ca7e346defb3c970d
BLAKE2b-256 ccc12f1bc4da095514ce4aa7c0119c830ff350485f645c514cc4a99751c5993e

See more details on using hashes here.

File details

Details for the file python_mbedtls-0.18.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_mbedtls-0.18.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c1d8a81828fdf2fcf73d4734eff89ee99695b68f8840d4cda34e535d2dd4e6a7
MD5 8b49dc895f8ae7e9477846177a3f5df9
BLAKE2b-256 1cb1c250f6abc0e16c8131e4fae2f46985f37b687592ba7716d539561303b173

See more details on using hashes here.

File details

Details for the file python_mbedtls-0.18.2-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_mbedtls-0.18.2-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e80bff34afa134b5792e0700ea14ea2d660e703db7def0c8825ffc8f1b01526c
MD5 2378b0e1942987e8fd3cfa9572778a5a
BLAKE2b-256 411ca4ecb0728c5fcaa99ff86a7831c3880ed9a6c34ee86b1a045661230347e2

See more details on using hashes here.

File details

Details for the file python_mbedtls-0.18.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_mbedtls-0.18.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9cdc19aa7f74754dfc4be744df170aad726afe7a4c5afbe448c1ac3d4e548edd
MD5 c499e8ffc3dd4d77ec44165a3cb9f5c9
BLAKE2b-256 f88c87f7049ad4df46a04e531a08f820d71a837bcde9ed64e034668282295fac

See more details on using hashes here.

File details

Details for the file python_mbedtls-0.18.2-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for python_mbedtls-0.18.2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d134fdcb0b8722ac271a7db5c1b714fe584479f635a1a93e0df646c00ccee57e
MD5 2cd7aae53f7d6e8116811326deff7fc3
BLAKE2b-256 1d02fd5808a1a35307fc67b146de7093903a159a892aaacf24654e4a81f7b742

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page