Skip to main content

Community detection using Newman spectral methods to maximize modularity

Project description

Python implementation of Newman’s spectral methods to maximize modularity.

See:

All the datasets in ./data comes from http://www-personal.umich.edu/~mejn/netdata/

Specifically, big_10_football_directed.gml is compiled by myself to test community detection for directed network. I combined data from http://www.sports-reference.com/cfb/conferences/big-ten/2005-schedule.html and the original football.gml to define the edge directions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-modularity-maximization-0.0.1.tar.gz (2.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file python-modularity-maximization-0.0.1.tar.gz.

File metadata

File hashes

Hashes for python-modularity-maximization-0.0.1.tar.gz
Algorithm Hash digest
SHA256 8c4d77db03b90998ee1651081df2e187ff033b849c1d06e57df4134cc5d85112
MD5 f9526b01930e805ac391226fa80a4471
BLAKE2b-256 ed396fdeb13f4efefaf02899681f5d068aa9696f8760431b4e35ff6347022496

See more details on using hashes here.

File details

Details for the file python_modularity_maximization-0.0.1-py2-none-any.whl.

File metadata

File hashes

Hashes for python_modularity_maximization-0.0.1-py2-none-any.whl
Algorithm Hash digest
SHA256 b376fd959ffe60f1d8ca129fb5b63c3a33c437d9fd7a4ea7afcc1a42c173c9f5
MD5 c193cc4ea4b400b343797b1d864e6f36
BLAKE2b-256 78bf2367fafd5b41340e9f2b222feef0d8211d0f428aa5e7349bf6d6c43f0869

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page