Skip to main content

Community detection using Newman spectral methods to maximize modularity

Project description

Python implementation of Newman’s spectral methods to maximize modularity.

See:

All the datasets in ./data comes from http://www-personal.umich.edu/~mejn/netdata/

Specifically, big_10_football_directed.gml is compiled by myself to test community detection for directed network. I combined data from http://www.sports-reference.com/cfb/conferences/big-ten/2005-schedule.html and the original football.gml to define the edge directions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file python-modularity-maximization-0.0.1rc0.tar.gz.

File metadata

File hashes

Hashes for python-modularity-maximization-0.0.1rc0.tar.gz
Algorithm Hash digest
SHA256 a8e056a3155e63f78b961b73b1609cc7f6d1893b26e305a909537b2a04a0b322
MD5 a5fbbd7fd06ce964e15ab76009171d28
BLAKE2b-256 1e844849c5510c5b309e0b284d8c6d05aea277cca1cf24095dd76e660ed89737

See more details on using hashes here.

File details

Details for the file python_modularity_maximization-0.0.1rc0-py2-none-any.whl.

File metadata

File hashes

Hashes for python_modularity_maximization-0.0.1rc0-py2-none-any.whl
Algorithm Hash digest
SHA256 12de823ba6279a8356acdde68d4a5b3bc773a72b443841286a21314d6d42d433
MD5 6351781e210b240f84df4de67d5cded9
BLAKE2b-256 86d2b2c7b72d363c27502eadb121962c822d8af631bfaef14a006840e3bc355b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page