Skip to main content

Community detection using Newman spectral methods to maximize modularity

Project description

See:

A quick start can be found .. _here: https://zhiyzuo.github.io/python-modularity-maximization/

All the datasets in ./data comes from http://www-personal.umich.edu/~mejn/netdata/

Specifically, big_10_football_directed.gml is compiled by myself to test community detection for directed network. I combined data from http://www.sports-reference.com/cfb/conferences/big-ten/2005-schedule.html and the original football.gml to define the edge directions.

Change log:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

python_modularity_maximization-0.0.1rc4-py2.py3-none-any.whl (10.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file python-modularity-maximization-0.0.1rc4.tar.gz.

File metadata

File hashes

Hashes for python-modularity-maximization-0.0.1rc4.tar.gz
Algorithm Hash digest
SHA256 6a33ea068ea5faab0789b2e05b0761b48cd14da295470d79deeffafcac114b54
MD5 2bf23a94c42ebf98db1609b21eb4587b
BLAKE2b-256 a4f6ffc3c84114054df6764efe64e23457d186ad9b967ae6322d24c9f265d16e

See more details on using hashes here.

File details

Details for the file python_modularity_maximization-0.0.1rc4-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for python_modularity_maximization-0.0.1rc4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 a30b94bda5835507501b17ee7e0d1031ed294319d4c812d43aa3f09da42ab8be
MD5 100ef33b0e6af2a5bb9b1a1df839ef32
BLAKE2b-256 465997900e56441373a079950c79e2788337658baa954d73478192bb645f17f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page