Skip to main content

MObility Simulation System

Project description

MOSS: MObility Simulation System

A GPU-accelerated Large-scale Open Microscopic Traffic Simulation System

Website: https://moss.fiblab.net

Features

  • Efficient: MOSS adopts GPU as the computational engine, which accelerates 100 times compared to existing microscopic traffic simulators, allowing rapid simulation of large-scale urban road networks.
  • Realistic: MOSS provides the cutting-edge AIGC method to generate globally available realistic OD matrices for travel demand generation and allows the user to quickly calibrate the simulation parameters to obtain realistic simulation results.
  • Open: The simulator, toolchain, and sample programs will be open-sourced on Github for community access, and we hope that more people will join in the development and application of MOSS.

Related Repositories

  • mosstool: The toolchain for MOSS, URL.
  • sample programs: The sample programs for MOSS, URL.

Installation

Prerequisites

  • Linux
  • CUDA 11.x / CUDA 12.x
  • Python >= 3.8

Install

pip install python-moss

FAQ

Q1: How to resolve the error ImportError: /.../libstdc++.so.6: version 'GLIBCXX_3.4.30' not found?

A1: Run conda install -c conda-forge libstdcxx-ng=12 in the current conda environment.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

python_moss-0.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

python_moss-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

python_moss-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

python_moss-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

python_moss-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file python_moss-0.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1574ee7231592e17769f0aaf73d485a6e093792fad6db81a6156407330586a45
MD5 53ceb9a86af128c42b76e11af05a76c9
BLAKE2b-256 e6e267d4e898d03de0a7f62367f0ffc026fb4044bd7a482756103f156e4edd30

See more details on using hashes here.

File details

Details for the file python_moss-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a57270534ce4b0249fc476ce205422f819b31d4d5e8f1b328f00d3e668212ae4
MD5 94d5cf6088ba3e7d698c32f2ca76fffa
BLAKE2b-256 12c9a1280e91c6c59f4650675f41ae5900fcd0b7374f74164df2969536f721d6

See more details on using hashes here.

File details

Details for the file python_moss-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1eea805c737aa4886b73de07d9374ed4f39b8df1567ffc425eb4fec12aa7bd62
MD5 a9e55a926e9b4abc2ec3297e08e9fbc8
BLAKE2b-256 e38f3d8738ec7984d1ae2239ee51d7b9302b9e17d614e41def79c4fe589710f4

See more details on using hashes here.

File details

Details for the file python_moss-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6c6102ec852b035c2fe13c18b01f461f518bf83a3351a1941aaf488d552b108c
MD5 fbd27f5615591a34bd4fd139e2174f8b
BLAKE2b-256 2cd283bdb6495fa1d5430e9ce16a9168d397d47fd69e686f9c6b88c03166cf8d

See more details on using hashes here.

File details

Details for the file python_moss-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1826f383ee591cb9aa3fcd344f747b52e9bf2cff80ebbf466a45b1b7411e9231
MD5 b405cfb08324a59e507509d4afcf6dc9
BLAKE2b-256 e9a00ddc2df2944136fbd6868e1a356e194b7029f8d595902495c9fd10a6e88f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page