Skip to main content

MObility Simulation System

Project description

MOSS: MObility Simulation System

A GPU-accelerated Large-scale Open Microscopic Traffic Simulation System

Website: https://moss.fiblab.net

Features

  • Efficient: MOSS adopts GPU as the computational engine, which accelerates 100 times compared to existing microscopic traffic simulators, allowing rapid simulation of large-scale urban road networks.
  • Realistic: MOSS provides the cutting-edge AIGC method to generate globally available realistic OD matrices for travel demand generation and allows the user to quickly calibrate the simulation parameters to obtain realistic simulation results.
  • Open: The simulator, toolchain, and sample programs will be open-sourced on Github for community access, and we hope that more people will join in the development and application of MOSS.

Related Repositories

  • mosstool: The toolchain for MOSS, URL.
  • sample programs: The sample programs for MOSS, URL.

Installation

Prerequisites

  • Linux
  • CUDA 11.8
  • Python >= 3.8

Install

pip install python-moss

FAQ

Q1: How to resolve the error ImportError: /.../libstdc++.so.6: version 'GLIBCXX_3.4.30' not found?

A1: Run conda install -c conda-forge libstdcxx-ng=12 in the current conda environment.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

python_moss-0.4.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

python_moss-0.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

python_moss-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

python_moss-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

python_moss-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file python_moss-0.4.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.4.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0deab5ba2ea16e3745f8b2582a20bbb575e1d85bf39640b502397229b5593761
MD5 4b4d6e08090d42b0349106f195efda61
BLAKE2b-256 5bb2476276bfb3f219573d19df5a40b8de90f2d598185094d5779de2bda4eb6c

See more details on using hashes here.

File details

Details for the file python_moss-0.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fab99853bcab4ddd5de31e0b219bb707e67cad77788c948af5a81c15c9cb9bd0
MD5 259796c65461d7a4ae333db4eae87d66
BLAKE2b-256 455ea99f0354684b3be6a86fa5fc20e5493a669b6b54cd56fe4be70beda6212d

See more details on using hashes here.

File details

Details for the file python_moss-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0731f40ce3ea7fd4912aabc168cc75d5bc45993d5c2bdab31ae6a6209034d8f3
MD5 be1a9cd8af509ebe5fce0709e482ff21
BLAKE2b-256 d3053b633711a1d61f43ebb6b2ff4d67439c8d795fd49dab37578972bd2a5ee6

See more details on using hashes here.

File details

Details for the file python_moss-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bdbf31baa8ae75f6670a70bef32cf477230d5b996b5791bd5ba50cd60df5cec0
MD5 f6ad2e43fbdf7276c29fb98148008867
BLAKE2b-256 8258211c8f3e2c693f3faf4975a2e3823f1b2ed1efcfc4f628fb98603a09039e

See more details on using hashes here.

File details

Details for the file python_moss-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a69ff57a20dc933a720734380235e6c0dc589e92b088cba3bdca029cef4f883
MD5 fc01625c1e9db23099cfb1b0dc83a18d
BLAKE2b-256 cb5c1111dd943aea644dac433e6a96f5751ac264d7c249b7ac451d63cfab5c2f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page