Skip to main content

PKCS#11 (Cryptoki) support for Python

Project description

A high level, “more Pythonic” interface to the PKCS#11 (Cryptoki) standard to support HSM and Smartcard devices in Python.

The interface is designed to follow the logical structure of a HSM, with useful defaults for obscurely documented parameters. Many APIs will optionally accept iterables and act as generators, allowing you to stream large data blocks for symmetric encryption.

python-pkcs11 also includes numerous utility functions to convert between PKCS #11 data structures and common interchange formats including PKCS #1 and X.509.

python-pkcs11 is fully documented and has a full integration test suite for all features, with continuous integration against multiple HSM platforms including:

  • Thales nCipher

  • Opencryptoki TPM

  • OpenSC/Smartcard-HSM/Nitrokey HSM

Source: https://github.com/danni/python-pkcs11

Documentation: http://python-pkcs11.readthedocs.io/en/latest/

Getting Started

Install from Pip:

pip install python-pkcs11

Or build from source:

python setup.py build

Assuming your PKCS#11 library is set as PKCS11_MODULE and contains a token named DEMO:

AES

import pkcs11

# Initialise our PKCS#11 library
lib = pkcs11.lib(os.environ['PKCS11_MODULE'])
token = lib.get_token(token_label='DEMO')

data = b'INPUT DATA'

# Open a session on our token
with token.open(user_pin='1234') as session:
    # Generate an AES key in this session
    key = session.generate_key(pkcs11.KeyType.AES, 256)

    # Get an initialisation vector
    iv = session.generate_random(128)  # AES blocks are fixed at 128 bits
    # Encrypt our data
    crypttext = key.encrypt(data, mechanism_param=iv)

3DES

import pkcs11

# Initialise our PKCS#11 library
lib = pkcs11.lib(os.environ['PKCS11_MODULE'])
token = lib.get_token(token_label='DEMO')

data = b'INPUT DATA'

# Open a session on our token
with token.open(user_pin='1234') as session:
    # Generate a DES key in this session
    key = session.generate_key(pkcs11.KeyType.DES3)

    # Get an initialisation vector
    iv = session.generate_random(64)  # DES blocks are fixed at 64 bits
    # Encrypt our data
    crypttext = key.encrypt(data, mechanism_param=iv)

RSA

import pkcs11

lib = pkcs11.lib(os.environ['PKCS11_MODULE'])
token = lib.get_token(token_label='DEMO')

data = b'INPUT DATA'

# Open a session on our token
with token.open(user_pin='1234') as session:
    # Generate an RSA keypair in this session
    pub, priv = session.generate_keypair(pkcs11.KeyType.RSA, 2048)

    # Encrypt as one block
    crypttext = pub.encrypt(data)

DSA

import pkcs11

lib = pkcs11.lib(os.environ['PKCS11_MODULE'])
token = lib.get_token(token_label='DEMO')

data = b'INPUT DATA'

# Open a session on our token
with token.open(user_pin='1234') as session:
    # Generate an DSA keypair in this session
    pub, priv = session.generate_keypair(pkcs11.KeyType.DSA, 1024)

    # Sign
    signature = priv.sign(data)

ECDSA

import pkcs11

lib = pkcs11.lib(os.environ['PKCS11_MODULE'])
token = lib.get_token(token_label='DEMO')

data = b'INPUT DATA'

# Open a session on our token
with token.open(user_pin='1234') as session:
    # Generate an EC keypair in this session from a named curve
    ecparams = session.create_domain_parameters(
        pkcs11.KeyType.EC, {
            pkcs11.Attribute.EC_PARAMS: pkcs11.util.ec.encode_named_curve_parameters('prime256v1'),
        }, local=True)
    pub, priv = ecparams.generate_keypair()

    # Sign
    signature = priv.sign(data)

Diffie-Hellman

import pkcs11

lib = pkcs11.lib(os.environ['PKCS11_MODULE'])
token = lib.get_token(token_label='DEMO')

with token.open() as session:
    # Given shared Diffie-Hellman parameters
    parameters = session.create_domain_parameters(pkcs11.KeyType.DH, {
        pkcs11.Attribute.PRIME: prime,  # Diffie-Hellman parameters
        pkcs11.Attribute.BASE: base,
    })

    # Generate a DH key pair from the public parameters
    public, private = parameters.generate_keypair()

    # Share the public half of it with our other party.
    _network_.write(public[Attribute.VALUE])
    # And get their shared value
    other_value = _network_.read()

    # Derive a shared session key with perfect forward secrecy
    session_key = private.derive_key(
        pkcs11.KeyType.AES, 128,
        mechanism_param=other_value)

Elliptic-Curve Diffie-Hellman

import pkcs11

lib = pkcs11.lib(os.environ['PKCS11_MODULE'])
token = lib.get_token(token_label='DEMO')

with token.open() as session:
    # Given DER encocded EC parameters, e.g. from
    #    openssl ecparam -outform der -name <named curve>
    parameters = session.create_domain_parameters(pkcs11.KeyType.EC, {
        pkcs11.Attribute.EC_PARAMS: ecparams,
    })

    # Generate a DH key pair from the public parameters
    public, private = parameters.generate_keypair()

    # Share the public half of it with our other party.
    _network_.write(public[pkcs11.Attribute.EC_POINT])
    # And get their shared value
    other_value = _network_.read()

    # Derive a shared session key
    session_key = private.derive_key(
        pkcs11.KeyType.AES, 128,
        mechanism_param=(pkcs11.KDF.NULL, None, other_value))

Tested Compatibility

Functionality

SoftHSMv2

Thales nCipher

Opencryptoki

OpenSC (Nitrokey)

Get Slots/Tokens

Works

Works

Works

Works

Get Mechanisms

Works

Works

Works

Works

Initialize token

Not implemented

Slot events

Not implemented

Alternative authentication path

Not implemented

Always authenticate keys

Not implemented

Create/Copy

Keys

Works

Works

Errors

Create

Certificates

Caveats [1]

Caveats [1]

Caveats [1]

?

Domain Params

Caveats [1]

Caveats [1]

?

N/A

Destroy Object

Works

N/A

Works

Works

Generate Random

Works

Works

Works

Works

Seed Random

Works

N/A

N/A

N/A

Digest (Data & Keys)

Works

Caveats [2]

Works

Works

AES

Generate key

Works

Works

Works

N/A

Encrypt/Decrypt

Works

Works

Works

Wrap/Unwrap

? [3]

Works

Errors

Sign/Verify

Works

Works [4]

N/A

DES2/ DES3

Generate key

Works

Works

Works

N/A

Encrypt/Decrypt

Works

Works

Works

Wrap/Unwrap

?

?

?

Sign/Verify

?

?

?

RSA

Generate key pair

Works

Works

Works

Works [4] [8]

Encrypt/Decrypt

Works

Works

Works

Decrypt only [9]

Wrap/Unwrap

Works

Works

Works

N/A

Sign/Verify

Works

Works

Works

Works

DSA

Generate parameters

Works

Error

N/A

N/A

Generate key pair

Works

Caveats [5]

Sign/Verify

Works

Works [4]

DH

Generate parameters

Works

N/A

N/A

N/A

Generate key pair

Works

Caveats [6]

Derive Key

Works

Caveats [7]

EC

Generate key pair

Caveats [6]

? [3]

N/A

Works

Sign/Verify (ECDSA)

Works [4]

? [3]

Sign only [9]

Derive key (ECDH)

Works

? [3]

?

Proprietary extensions

N/A

Not implemented

N/A

N/A

Python version:

  • 3.4 (with aenum)

  • 3.5 (with aenum)

  • 3.6

PKCS#11 versions:

  • 2.11

  • 2.20

  • 2.40

Feel free to send pull requests for any functionality that’s not exposed. The code is designed to be readable and expose the PKCS #11 spec in a straight-forward way.

If you want your device supported, get in touch!

More info on PKCS #11

The latest version of the PKCS #11 spec is available from OASIS:

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html

You should also consult the documentation for your PKCS #11 implementation. Many implementations expose additional vendor options configurable in your environment, including alternative features, modes and debugging information.

License

MIT License

Copyright (c) 2017 Danielle Madeley

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-pkcs11-0.7.0.tar.gz (106.5 kB view details)

Uploaded Source

File details

Details for the file python-pkcs11-0.7.0.tar.gz.

File metadata

  • Download URL: python-pkcs11-0.7.0.tar.gz
  • Upload date:
  • Size: 106.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.7

File hashes

Hashes for python-pkcs11-0.7.0.tar.gz
Algorithm Hash digest
SHA256 9737e0c24cabb8bc9d48bf8c57c3df2a70f8cdd96b70c50290803286f9e46bf7
MD5 4998d6f038d2997958f2004f482580da
BLAKE2b-256 3e249d55a78b3501201d2dfeb035ce1b139f8846505b3ddb9cadb4c2254259d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page