Library for accurate statistical calculations using Python.
Project description
Python Probabilities 🐍
Library for accurate statistical calculations using Python.
Binomial Distributions
Probability mass function
BinomialPD(r, n, p)
For the random variable X
with the binomial distribution B(n, p)
, calculate the probability mass function.
Where r
is the number of successes, n
is the number of trials, and p
is the probability of success.
Example
To calculate P(X=7)
for the binomial distribution X~B(11, 0.33)
:
>>> from python_probabilities import BinomialPD
>>> BinomialPD(7, 11, 0.33)
0.029656979029412885
Cumulative distribution function
BinomialCD(r, n, p)
For the random variable X
with the binomial distribution B(n, p)
, calculate the cumulative distribution function.
Where r
is the number of successes, n
is the number of trials, and p
is the probability of success.
Example
To calculate P(X≤7)
for the binomial distribution X~B(11, 0.33)
:
>>> from python_probabilities import BinomialCD
>>> BinomialCD(7, 11, 0.33)
0.9912362670526581
Inverse cumulative distribution function
InvBinomialCD(q, n, p)
For the random variable X
with the binomial distribution B(n, p)
, calculate the inverse for the cumulative distribution function.
Where q
is the cumulative probability, n
is the number of trials, and p
is the probability of success.
InvBinomialCD(q, n, p)
returns the smallest integer x
such that BinomialCD(x, n, p)
is greater than or equal to q
.
Example
To calculate the corresponding value for r
(the number of successes) given the value for q
(the cumulative probability):
>>> from python_probabilities import BinomialCD, InvBinomialCD
>>> InvBinomialCD(0.9912362670526581, 11, 0.333)
7
>>> BinomialCD(7, 11, 0.333)
0.9912362670526581
Normal Distributions
Probability density function
NormalPD(x, µ, σ)
Probability density function for the normal distribution X~N(µ, σ)
.
Where µ
is the mean, and σ
is the standard deviation.
Cumulative distribution function
NormalCD(x, µ, σ)
Cumulative distribution function for the normal distribution X~N(µ, σ)
.
Where µ
is the mean, and σ
is the standard deviation.
Example
To calculate P(X≤0.891)
for the normal distribution X~N(0.734, 0.114)
:
>>> from python_probabilities import NormalCD
>>> NormalCD(0.891, 0.734, 0.114)
0.9157737045522477
Inverse cumulative distribution function
InvNormalCD(y, µ, σ)
Inverse cumulative distribution function for the normal distribution X~N(µ, σ)
.
Where µ
is the mean, and σ
is the standard deviation.
InvNormalCD(y, µ, σ)
returns the smallest integer x
such that NormalCD(x, µ, σ)
is greater than or equal to y
.
Example
To calculate the corresponding value for x
given the value for y
:
>>> from python_probabilities import NormalCD, InvNormalCD
>>> InvNormalCD(0.9157737045522477, 0.734, 0.114)
0.891
>>> NormalCD(0.891, 0.734, 0.114)
0.9157737045522477
Poisson Distributions
Probability mass function
PoissonPD(r, m)
For the random variable X
with the poisson distribution Po(m)
, calculate the probability mass function.
Where r
is the number of occurrences, and m
is the mean rate of occurrence.
Example
To calculate P(X=7)
for the poisson distribution X~Po(11.556)
:
>>> from python_probabilities import PoissonPD
>>> PoissonPD(11, 23.445)
0.0019380401123575617
Cumulative distribution function
PoissonCD(r, m)
For the random variable X
with the poisson distribution Po(m)
, calculate the cumulative distribution function.
Where r
is the number of occurrences, and m
is the mean rate of occurrence.
Example
To calculate P(X≤7)
for the poisson distribution X~Po(11.556)
:
>>> from python_probabilities import PoissonCD
>>> PoissonCD(11, 23.445)
0.0034549033698374467
Inverse cumulative distribution
InvPoissonCD(q, m)
For the random variable X
with the poisson distribution Po(m)
, calculate the inverse for the cumulative distribution function.
Where q
is the cumulative probability, and m
is the mean rate of occurrence.
InvPoissonCD(q, m)
returns the smallest integer x
such that PoissonCD(x, m)
is greater than or equal to q
.
Example
To calculate the corresponding value for r
(number of occurrences) given the values for q
(cumulative probability):
>>> from python_probabilities import PoissonCD, InvPoissonCD
>>> InvPoissonCD(0.0034549033698374467, 23.445)
11
>>> PoissonCD(11, 23.445)
0.0034549033698374467
Geometric Distributions
Probability mass function
GeometricPD(x, p)
Probability mass function for the geometric distribution X~G(p)
.
Where x
is the number of trials before the first success, and p
is the probability of success.
Example
To calculate P(X=3)
for the geometric distribution X~G(0.491)
:
>>> from python_probabilities import GeometricPD
>>> GeometricPD(3, 0.491)
0.127208771
Cumulative distribution function
GeometricCD(x, p)
Cumulative distribution function for the geometric distribution X~G(p)
.
Where x
is the number of trials before the first success, and p
is the probability of success.
Example
To calculate P(X≤3)
for the geometric distribution X~G(0.491)
:
>>> from python_probabilities import GeometricCD
>>> GeometricCD(3, 0.491)
0.868127771
Inverse cumulative distribution function
InvGeometricCD(area, p)
Inverse cumulative distribution function for the geometric distribution X~G(p)
.
Where x
is the number of trials before the first success, and p
is the probability of success.
InvGeometricCD(area, p)
returns the smallest integer x
such that GeometricCD(x, p)
is greater than or equal to area
.
Example
To calculate the corresponding value for x
given the value for area
:
>>> from python_probabilities import GeometricCD, InvGeometricCD
>>> InvGeometricCD(0.868, 0.491)
3
>> GeometricCD(3, 0.491)
0.868127771
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file python_probabilities-0.4.3.tar.gz
.
File metadata
- Download URL: python_probabilities-0.4.3.tar.gz
- Upload date:
- Size: 16.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.4.0 CPython/3.9.2 Linux/5.15.90.1-microsoft-standard-WSL2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b5c72fffe956bc67c602d4ba9397b6008039c94c55c5eceda690424e4d909a3f |
|
MD5 | 19377051cdde0651f063ae50a6fd4214 |
|
BLAKE2b-256 | ef8d5ae2c1dcb4f36346cfbf4ca75ada0ac22d44dd5f52b418279bf9508ba8b0 |
File details
Details for the file python_probabilities-0.4.3-py3-none-any.whl
.
File metadata
- Download URL: python_probabilities-0.4.3-py3-none-any.whl
- Upload date:
- Size: 17.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.4.0 CPython/3.9.2 Linux/5.15.90.1-microsoft-standard-WSL2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d29993042c033e585a2a2b54922e101928940baaeff7baebe14b3817ff6d8acd |
|
MD5 | 199931bf16ac035082bb97c6e545b484 |
|
BLAKE2b-256 | 28c5c6d781fb819513ef04313efd669fe7e25b4039a5a9c9e95cbb11eaf902c9 |