Skip to main content

Python implementation of Priority R-Tree

Project description

python_prtree

python_prtree is a python/c++ implementation of the Priority R-Tree (see references below), an alternative to R-Tree. The supported futures are as follows:

  • Construct a Priority R-Tree (PRTree) from an array of rectangles.
    • PRTree2D, PRTree3D and PRTree4D (2D, 3D and 4D respectively)
  • insert and erase
    • The insert method can be passed pickable Python objects instead of int64 indexes.
  • query and batch_query
    • batch_query is parallelized by std::thread and is much faster than the query method.
    • The query method has an optional keyword argument return_obj; if return_obj=True, a Python object is returned.
  • rebuild
    • It improves performance when many insert/delete operations are called since the last rebuild.
    • Note that if the size changes more than 1.5 times, the insert/erase method also performs rebuild.

This package is mainly for mostly static situations where insertion and deletion events rarely occur.

Installation

You can install python_prtree with the pip command:

pip install python-prtree

If the pip installation does not work, please git clone clone and install as follows:

pip install -U cmake pybind11
git clone --recursive https://github.com/atksh/python_prtree
cd python_prtree
python setup.py install

Examples

import numpy as np
from python_prtree import PRTree2D

idxes = np.array([1, 2])

# rects is a list of (xmin, ymin, xmax, ymax)
rects = np.array([[0.0, 0.0, 1.0, 0.5],
                  [1.0, 1.5, 1.2, 3.0]])

prtree = PRTree2D(idxes, rects)


# batch query
q = np.array([[0.5, 0.2, 0.6, 0.3],
              [0.8, 0.5, 1.5, 3.5]])
result = prtree.batch_query(q)
print(result)
# [[1], [1, 2]]

# You can insert an additional rectangle by insert method,
prtree.insert(3, np.array([1.0, 1.0, 2.0, 2.0]))
q = np.array([[0.5, 0.2, 0.6, 0.3],
              [0.8, 0.5, 1.5, 3.5]])
result = prtree.batch_query(q)
print(result)
# [[1], [1, 2, 3]]

# Plus, you can erase by an index.
prtree.erase(2)
result = prtree.batch_query(q)
print(result)
# [[1], [1, 3]]

# Non-batch query is also supported.
print(prtree.query([0.5, 0.5, 1.0, 1.0]))
# [1, 3]

# Point query is also supported.
print(prtree.query([0.5, 0.5]))
# [1]
print(prtree.query(0.5, 0.5))  # 1d-array
# [1]
import numpy as np
from python_prtree import PRTree2D

objs = [{"name": "foo"}, (1, 2, 3)]  # must NOT be unique but pickable
rects = np.array([[0.0, 0.0, 1.0, 0.5],
                  [1.0, 1.5, 1.2, 3.0]])

prtree = PRTree2D()
for obj, rect in zip(objs, rects):
    prtree.insert(bb=rect, obj=obj)

# returns indexes genereted by incremental rule.
result = prtree.query((0, 0, 1, 1))
print(result)
# [1]

# returns objects when you specify the keyword argment return_obj=True
result = prtree.query((0, 0, 1, 1), return_obj=True)
print(result)
# [{'name': 'foo'}]

The 1d-array batch query will be implicitly treated as a batch with size = 1. If you want 1d result, please use query method.

result = prtree.query(q[0])
print(result)
# [1]

result = prtree.batch_query(q[0])
print(result)
# [[1]]

You can also erase(delete) by index and insert a new one.

prtree.erase(1)  # delete the rectangle with idx=1 from the PRTree

prtree.insert(3, np.array([0.3, 0.1, 0.5, 0.2]))  # add a new rectangle to the PRTree

You can save and load a binary file as follows.

# save
prtree.save('tree.bin')


# load with binary file
prtree = PRTree('tree.bin')

# or defered load
prtree = PRTree()
prtree.load('tree.bin')

Note that cross-version compatibility is NOT guaranteed, so please reconstruct your tree when you update this package.

Performance

Construction

2d

2d_fig1

3d

3d_fig1

Query and batch query

2d

2d_fig2

3d

3d_fig2

Delete and insert

2d

2d_fig3

3d

3d_fig3

New Features and Changes

python-prtree>=0.5.8

  • The insert method has been improved to select the node with the smallest mbb expansion.
  • The erase method now also executes rebuild when the size changes by a factor of 1.5 or more.

python-prtree>=0.5.7

  • You can use PRTree4D.

python-prtree>=0.5.3

  • Add compression for pickled objects.

python-prtree>=0.5.2

You can use pickable Python objects instead of int64 indexes for insert and query methods:

python-prtree>=0.5.0

  • Changed the input order from (xmin, xmax, ymin, ymax, ...) to (xmin, ymin, xmax, ymax, ...).
  • Added rebuild method to build the PRTree from scratch using the already given data.
  • Fixed a bug that prevented insertion into an empty PRTree.

python-prtree>=0.4.0

  • You can use PRTree3D:

Reference

The Priority R-Tree: A Practically Efficient and Worst-Case Optimal R-Tree Lars Arge, Mark de Berg, Herman Haverkort, and Ke Yi Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data (SIGMOD '04), Paris, France, June 2004, 347-358. Journal version in ACM Transactions on Algorithms. author's page

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python_prtree-0.6.1.tar.gz (2.3 MB view details)

Uploaded Source

Built Distributions

python_prtree-0.6.1-cp312-cp312-win_amd64.whl (146.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

python_prtree-0.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (211.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

python_prtree-0.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (195.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

python_prtree-0.6.1-cp312-cp312-macosx_11_0_arm64.whl (158.1 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

python_prtree-0.6.1-cp312-cp312-macosx_10_14_x86_64.whl (185.9 kB view details)

Uploaded CPython 3.12 macOS 10.14+ x86-64

python_prtree-0.6.1-cp311-cp311-win_amd64.whl (146.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

python_prtree-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (212.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

python_prtree-0.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (195.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

python_prtree-0.6.1-cp311-cp311-macosx_11_0_arm64.whl (158.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

python_prtree-0.6.1-cp311-cp311-macosx_10_14_x86_64.whl (185.4 kB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

python_prtree-0.6.1-cp310-cp310-win_amd64.whl (145.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

python_prtree-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (210.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

python_prtree-0.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (194.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

python_prtree-0.6.1-cp310-cp310-macosx_11_0_arm64.whl (157.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

python_prtree-0.6.1-cp310-cp310-macosx_10_14_x86_64.whl (183.9 kB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

python_prtree-0.6.1-cp39-cp39-win_amd64.whl (145.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

python_prtree-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (211.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

python_prtree-0.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (194.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

python_prtree-0.6.1-cp39-cp39-macosx_11_0_arm64.whl (157.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

python_prtree-0.6.1-cp39-cp39-macosx_10_14_x86_64.whl (184.0 kB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

python_prtree-0.6.1-cp38-cp38-win_amd64.whl (142.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

python_prtree-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (210.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

python_prtree-0.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (194.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

python_prtree-0.6.1-cp38-cp38-macosx_11_0_arm64.whl (184.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

python_prtree-0.6.1-cp38-cp38-macosx_10_14_x86_64.whl (183.8 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

python_prtree-0.6.1-cp37-cp37m-win_amd64.whl (141.7 kB view details)

Uploaded CPython 3.7m Windows x86-64

python_prtree-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (215.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

python_prtree-0.6.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (201.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

python_prtree-0.6.1-cp37-cp37m-macosx_10_14_x86_64.whl (183.0 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

python_prtree-0.6.1-cp36-cp36m-win_amd64.whl (141.7 kB view details)

Uploaded CPython 3.6m Windows x86-64

python_prtree-0.6.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (215.8 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

python_prtree-0.6.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (201.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

python_prtree-0.6.1-cp36-cp36m-macosx_10_14_x86_64.whl (182.8 kB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file python_prtree-0.6.1.tar.gz.

File metadata

  • Download URL: python_prtree-0.6.1.tar.gz
  • Upload date:
  • Size: 2.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.19

File hashes

Hashes for python_prtree-0.6.1.tar.gz
Algorithm Hash digest
SHA256 0172b4c5b55f73aacbfdeb1b2fa287af43581eb9af8a005b628b5a860b037919
MD5 7a235a12daba7963d2a4c2bde11a12a3
BLAKE2b-256 b69de19ed78c60e4a8b49c11e7d82dd1f15c4e87773c3aab0b16b62fbfe8465e

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ba00a5dcca9a0ccfe73a59c5396403f1278f35aeed98274338b666a94c1fc43f
MD5 87bbb76a1396f2f2727c2b4b055bf5da
BLAKE2b-256 c9c83304ebcd006adbae373595652d2a7f6f74506d5dbefa7f380aa9f50d6931

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c55c1a945d1008f0236668e4d5657586573f5f0153e6d89ce2527c6513fa30b3
MD5 17b76e4ec534f86791fcbd35ff727e26
BLAKE2b-256 be16729605b9e3fdf825ecd90287f1f063c1906d08f457cde4eb00a2610ef619

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b26b4762028e4877c3c4e862b3ccee5aead8984b186039d5b179b6b4eeedb724
MD5 69d245fca3c58aac7210cac61dd8e482
BLAKE2b-256 f017d72643ff2b6e6a76c9c5edb0263a147e806537b40a40aac6fea5e4ff1c3e

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a5d0caf1267dc1dba426fae57ce62892316e06ba245199625bb624dcb63eeaa4
MD5 078e123a7644b0ac80508246c1d1238c
BLAKE2b-256 e1b98d178a2a77e26ab8dcc9b74368dedba8a66373c3dcfc7db45e812139cb8a

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp312-cp312-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp312-cp312-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 dda032b0a05d72e8642ecf1de264f5768bff856c5face7964f746f12b89739c7
MD5 b63d20d9f125503ca5017a19aee5b7c4
BLAKE2b-256 0e70c50c9f7495e0d42899b4433105ed833a614eeed894e16d31ae4c8da7aa42

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 096e66ab9498f143e527d7faea801e3ede5e8f224e7e09588ef67ab5a6da0a9c
MD5 c36020c0d70e4d0894b838c6db31a212
BLAKE2b-256 73495bebe9f8ed551b682623b6acd6af5450f99f20b618e00969b35295a2f694

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 029f4791dbc8fb0fd6e6a6becfc59bc03f9dc86e5f120f121e3a30750f84476a
MD5 bba52c3d45997c62ee97adc081fe7f60
BLAKE2b-256 9ea7a389448267dab689045d0411c98e81c84cfe4b34e0fdcf90a57dba8f824a

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 31691b885ca3dc1b0a5f10603eab60e802be7fd99eaf36c138f893d54f0ccc8b
MD5 70c56ee6108edbb4079669b9cc688841
BLAKE2b-256 e0c5a4b199cf589345114506be0ab77fa28cc2a8f606af60fc5f595ff65877f3

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cfc1f15ffccef869f7ceae2e719480f6ebac49986ee54e7a57308c1672a569df
MD5 927bb60b211b509d060663896d68253e
BLAKE2b-256 202f69ee7a648bdd7e87f50481a2be683ef52f39788988bf674d663e6f231569

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0c12d089cde1c0421241a9f8682e4b3d3d93e7fd22418054aefc5398d01a71e7
MD5 69f86c4a5e2fd33fbb0b2e50b382c1f1
BLAKE2b-256 cb3889e25a075dc38e9755ec0cc7b75c656f41239da457f76e4787a748a5b274

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5f677b1504d54fe434257727b3d1ff2e9457a9da218a17ae5c69928ea3cee367
MD5 e01d87d423d1a32dfcc06f94f5f8cdab
BLAKE2b-256 460880fcb1a992bf467d261d6e51549012a463daffc59ef365df8d6c5f767fda

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4b77f1caba35421e62b8d7c59fe73c4d6d1b6b752da0a46a557b8c7587a04ead
MD5 d341c561c84f0444ca66d7e9985728aa
BLAKE2b-256 3156f169d783c01ac97d107084238c0b41c3021694624dc0a8719816f1b1fdf9

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6fffd416bf08c064aba9db1e62ef754b3884e3ebc069d4b2f4be606dc6e99172
MD5 37198b4e6e81f1d768eca18d4b214afa
BLAKE2b-256 2057e95090f5ad2084f91591f0c3db5bc527a36f32fcb4e7af99dd88a776cbde

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ffb0522d25bcaa2dee2db3e9000c0f233c5439fa9b508be7cb49aab7b2c5eb7b
MD5 235bdb9e675cb6240fc1c198617ef6a8
BLAKE2b-256 3ecbf4b55e4befa9c198831df7d0cb3ca5e9e73ce3e24161f5bf74ce696b3489

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 33c1b07873433ae4a4f936420f694d82541f7e7ff5c5b0abdcc85482684f5e75
MD5 1b580d1f344eef1515578ab1b58b60bd
BLAKE2b-256 7af50cb4a786ac259a60641ec2b5bdefb0065403c193643f13aa41f5330287f5

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d755ab0b6dab7b07bfa725f9217e892f8d7974bcc96ae6d34ca36c42eaa641b2
MD5 bcea0bf7dfdef4013357425dfd17251a
BLAKE2b-256 2950e8d5a7203acae2cd84a346fa5c638a7c2a938f26e0d813cfe97f63702ea4

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df3a6b006681d36e24c2a7740602debceb8dcd8e1d68f2286fc9fdb39ded0407
MD5 039f9cdbf47c4829d4b5b2abf6f4a10e
BLAKE2b-256 3837ee33d96fd588b3ccc4f5252892de8233dc7c972d134de314220423b903d0

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ffce169a8988c5e391efdb1168d3cda1ef42daa9a11006af3068c94b7f094386
MD5 c3a224202bea44d88babe2472b78c180
BLAKE2b-256 3a754af06e5040372054f7036c0393cf40ef500c778a6518925c35fe66a170e4

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b349deaf525d77d8f6a9a773d2cbe80bebc948a12cb2a30916a7e4e607092787
MD5 3de97f607c45fe154e1a99d0aa030acc
BLAKE2b-256 cfb8e45d05c064629e24a4a274cce75f035d62417f9ff4129ca30fcb4c9b6093

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b2104de3dfd9e489331fc9c1d61db6656d2b31a634cdcfffe96f82006490b7f7
MD5 dff9653c99627b8e3a2bc730baed84a9
BLAKE2b-256 45ebcfd06c0860cccefccd34802ef1d622e2ad416aa6193dae00d2d8db2cc4c0

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 992009e6123ff24ea5d7d9a3469670535cc6328392fdead891a47cb786ddf826
MD5 84473b8a2eaadcd94809d497b78481d5
BLAKE2b-256 9f0ed2901d2b5c75644010dab6fa5829b551b00be7b190dc6fb541eef5d0f6c2

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee8a2ae3d68470b5d63c97ac5af0e7d69e26097a1bdbcfcfd5eb822aaef138b2
MD5 94ddf0991e5c0d1cf62de9cb96a67fee
BLAKE2b-256 5c6f3e7cdadddc78a381d352539ee319e26a37e744d736270986f7af19d8374f

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 add3b6456d79d4e17ff9854dd70ca3498f765df190e79568f41633d29cd51572
MD5 ea9a0526e687522d949e6682c2f44f7f
BLAKE2b-256 c286d58343c3c69ab15f13cac484594d310134b2345f842f5e4746d2af996f2a

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0995da325fa5093452748bc393005c54c8d044d34244cb101117e747fc2919c8
MD5 3c2bc7f0dfdaf27d4f3459de75ddc7ea
BLAKE2b-256 b175e710cf1a3b5617a410757ea63fb82c0abfa20e7dc712b9bd105f8b3681b8

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a96f98242503c77251262aa15c76556de9eae52d5377efce4d664a3c3721a199
MD5 475abd5c952404cf62b7e3c9b2934e63
BLAKE2b-256 1a8dd5d9c7a6436e073ad224eef715dd6e755f68b2237b59a8e430bcdd736d64

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 253bf93fe186485274558ce348e2412244817490f7aa73c0d60c4921982c319d
MD5 3324e3abecfa3166c08e5971800bf0a6
BLAKE2b-256 ee1022a053931e90aff01dbe56c10102e99250c3353c34b0db214c69f41a16c2

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c5f456ffd302c835fb5bd99dc20dbf2de07fc2df4dafabe5e51cdde082a964b
MD5 4e147b39a1d5516d5181eaad8b3d6647
BLAKE2b-256 05136ae9dc3627f1e66b93849af15cab98c49faaa11d31ae7246f48a74207aec

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 55b26311b9e2881e8d1535db8be8dad16b3fbc8a2b18ae0900097a4935d6b844
MD5 05d00518fe71d84a9da4dbe6300cc3ba
BLAKE2b-256 b370a92f77af258eb6e02976d771da013e46ef9d9724344f7f23570a2a6c6bc9

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 aee367dcce419a7defe512f70b5415589f6f04464f5b56a95e72ce31d3385530
MD5 0f092204823d6e0da2dd30f49af69f0c
BLAKE2b-256 bd1a0b605dc9d2da90f8b4f177b77ee0177d529da7ba71c70ff629ab2a0470ee

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 484b6d1edd00ba8d534afc924380f138bfcc5d4db4a7aeff4691dc943da06f93
MD5 f984a4dfa96c4d3521612bc29f5bfda0
BLAKE2b-256 39196fcb7ce6512186dc925abf28db5910516542572b40fceee7f51a234f9e23

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 16ac6c32a497cf8416938222a246b7dc5974cd33760ea5499ff91496217a976b
MD5 9a2d808f36bd91f7095aa0bc6ebc83b6
BLAKE2b-256 9a35da17fbfb8ebee7d026343b2ac99bfb1cc39309f3191130886db01282e4ae

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f5e4bb3950d79b319805f1dbb362cd074bd349c54fc66e4cb2a73bfe3dd6468b
MD5 61bcb4c0764b0151c9bd45bd795cdfb3
BLAKE2b-256 7bdf5201878e6911ef23808369fc1b426615e8360f7d47350b06c64f9193f9c7

See more details on using hashes here.

File details

Details for the file python_prtree-0.6.1-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for python_prtree-0.6.1-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f1555d4e4cdafd4822234398ba5c8c88ddac412f4c5d937d3f7d1f220931038a
MD5 5c31f7401ea438af8452208b11e9688d
BLAKE2b-256 5b98adc5bdfeaafee317ee128952a8de421f7145936b5eb1cea91670a5d82885

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page