Skip to main content

Unofficial Python package to ease access to groundwater data in South Australia

Project description

python-sa-gwdata

sa_gwdata is a Python package to ease access to groundwater data in South Australia. It provides access to JSON data from the WaterConnect Groundwater Data website, and also provides some well data from SARIG. There are simple methods to easily turn this data into pandas DataFrames.

This is an unofficial hobby project of mine. Use at your own risk... or perhaps reward? :-)

Install

> pip install python-sa-gwdata

How to use

Start a web session with Groundwater Data:

>>> import sa_gwdata
>>> session = sa_gwdata.WaterConnectSession()

On initialisation it downloads some summary information.

>>> session.networks
{'ANGBRM': 'Angas Bremer PWA',
 'AW_NP': 'Alinytjara Wilurara Non-Prescribed Area',
 'BAROOTA': 'Baroota PWRA',
 'BAROSSA': 'Barossa PWRA',
 'BAROSS_IRR': 'Barossa irrigation wells salinity monitoring',
 'BERI_REN': 'Berri and Renmark Irrigation Areas',
 'BOT_GDNS': 'Botanic Gardens wetlands',
 'CENT_ADEL': 'Central Adelaide PWA',
 'CHOWILLA': 'Chowilla Floodplain',
 ...
}

With this information we can make some direct REST calls:

>>> r = session.get("GetObswellNetworkData", params={"Network": "CENT_ADEL"})
>>> r.df.head(5)
	aq_mon	chem	class	dhno	drill_date	lat	latest_open_date	latest_open_depth	latest_sal_date	latest_swl_date	...	pwa	replaceunitnum	sal	salstatus	stat_desc	swl	swlstatus	tds	water	yield
0	Tomw(T2)	Y	WW	27382	1968-02-07	-34.764662	1992-02-20	225.00	2013-09-02	2018-09-18	...	Central Adelaide	NaN	Y	C	OPR	3.47	C	3620.0	Y	2.00
1	Qhcks	N	WW	27437	1963-01-01	-34.800905	1963-01-01	6.40	1984-02-01	1986-03-05	...	Central Adelaide	NaN	Y	H	NaN	5.86	H	1121.0	Y	NaN
2	Tomw(T1)	Y	WW	27443	1972-04-20	-34.811124	2014-04-01	0.00	1991-10-09	2003-07-04	...	Central Adelaide	NaN	Y	H	BKF	NaN	H	2030.0	Y	5.00
3	Tomw(T1)	Y	WW	27504	1978-02-28	-34.779893	1978-02-28	144.50	2016-04-06	2011-09-18	...	Central Adelaide	NaN	Y	H	OPR	11.21	H	2738.0	Y	0.00
4	Tomw(T1)	Y	WW	27569	1975-01-01	-34.891250	1975-07-09	131.10	1986-11-13	1988-09-21	...	Central Adelaide	NaN	Y	H	BKF	9.90	H	42070.0	Y	12.50

Get water levels:

>>> wl = session.get("GetWaterLevelDetails", params={"DHNO": 188444}).df
>>> wl.head(5)
	anomalous_ind	data_source_code	measured_during	obs_date	pumping_ind	rswl	standing_water_level
0	N	DEWNR	D	2002-01-28	N	-8.12	15.08
1	N	DEWNR	M	2002-03-06	N	-12.50	19.46
2	N	DEWNR	M	2002-10-02	N	-3.43	10.39
3	N	DEWNR	M	2003-03-04	N	-11.69	18.65
4	N	DEWNR	M	2003-09-27	N	-1.93	8.89

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-sa-gwdata-0.4.0.tar.gz (4.7 kB view details)

Uploaded Source

Built Distribution

python_sa_gwdata-0.4.0-py3-none-any.whl (5.4 kB view details)

Uploaded Python 3

File details

Details for the file python-sa-gwdata-0.4.0.tar.gz.

File metadata

  • Download URL: python-sa-gwdata-0.4.0.tar.gz
  • Upload date:
  • Size: 4.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for python-sa-gwdata-0.4.0.tar.gz
Algorithm Hash digest
SHA256 f0389337377e3c1ba00968709110517aa9a916310e042283ae3482d354a91f2e
MD5 83ca05817fcddf12bbcfba9fbeee59bc
BLAKE2b-256 c30585a69e0dc64bc014b6ef484718d27774c70d641aa3eaf701d18df084006f

See more details on using hashes here.

File details

Details for the file python_sa_gwdata-0.4.0-py3-none-any.whl.

File metadata

  • Download URL: python_sa_gwdata-0.4.0-py3-none-any.whl
  • Upload date:
  • Size: 5.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for python_sa_gwdata-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 44edbb7f9ad834f074cc29cc2d0f58135d4f99ce3bf9dd4d9113e2f065b36635
MD5 fd8f871e37c4e2f654fff22a005b0a5c
BLAKE2b-256 fde3f32f8e5e82372ca26342a6cccbc5f61016ef84067457cb458f781612108a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page