Skip to main content

Unofficial Python package to ease access to groundwater data in South Australia

Project description

python-sa-gwdata

sa_gwdata is a Python package to ease access to groundwater data in South Australia. It provides access to JSON data from the WaterConnect Groundwater Data website, and also provides some well data from SARIG. There are simple methods to easily turn this data into pandas DataFrames.

This is an unofficial side-project done in my spare time.

Install

> pip install python-sa-gwdata

How to use

Check out the documentation, and some tutorial Jupyter Notebooks in the notebooks folder.

Start a web session with Groundwater Data:

>>> import sa_gwdata
>>> session = sa_gwdata.WaterConnectSession()

On initialisation it downloads some summary information.

>>> session.networks
{'ANGBRM': 'Angas Bremer PWA',
 'AW_NP': 'Alinytjara Wilurara Non-Prescribed Area',
 'BAROOTA': 'Baroota PWRA',
 'BAROSSA': 'Barossa PWRA',
 'BAROSS_IRR': 'Barossa irrigation wells salinity monitoring',
 'BERI_REN': 'Berri and Renmark Irrigation Areas',
 'BOT_GDNS': 'Botanic Gardens wetlands',
 'CENT_ADEL': 'Central Adelaide PWA',
 'CHOWILLA': 'Chowilla Floodplain',
 ...
}

With this information we can make some direct REST calls:

>>> r = session.get("GetObswellNetworkData", params={"Network": "CENT_ADEL"})
>>> r.df.head(5)
	aq_mon	chem	class	dhno	drill_date	lat	latest_open_date	latest_open_depth	latest_sal_date	latest_swl_date	...	pwa	replaceunitnum	sal	salstatus	stat_desc	swl	swlstatus	tds	water	yield
0	Tomw(T2)	Y	WW	27382	1968-02-07	-34.764662	1992-02-20	225.00	2013-09-02	2018-09-18	...	Central Adelaide	NaN	Y	C	OPR	3.47	C	3620.0	Y	2.00
1	Qhcks	N	WW	27437	1963-01-01	-34.800905	1963-01-01	6.40	1984-02-01	1986-03-05	...	Central Adelaide	NaN	Y	H	NaN	5.86	H	1121.0	Y	NaN
2	Tomw(T1)	Y	WW	27443	1972-04-20	-34.811124	2014-04-01	0.00	1991-10-09	2003-07-04	...	Central Adelaide	NaN	Y	H	BKF	NaN	H	2030.0	Y	5.00
3	Tomw(T1)	Y	WW	27504	1978-02-28	-34.779893	1978-02-28	144.50	2016-04-06	2011-09-18	...	Central Adelaide	NaN	Y	H	OPR	11.21	H	2738.0	Y	0.00
4	Tomw(T1)	Y	WW	27569	1975-01-01	-34.891250	1975-07-09	131.10	1986-11-13	1988-09-21	...	Central Adelaide	NaN	Y	H	BKF	9.90	H	42070.0	Y	12.50

Get water levels:

>>> wl = session.get("GetWaterLevelDetails", params={"DHNO": 188444}).df
>>> wl.head(5)
	anomalous_ind	data_source_code	measured_during	obs_date	pumping_ind	rswl	standing_water_level
0	N	DEWNR	D	2002-01-28	N	-8.12	15.08
1	N	DEWNR	M	2002-03-06	N	-12.50	19.46
2	N	DEWNR	M	2002-10-02	N	-3.43	10.39
3	N	DEWNR	M	2003-03-04	N	-11.69	18.65
4	N	DEWNR	M	2003-09-27	N	-1.93	8.89

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-sa-gwdata-0.5.0.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

python_sa_gwdata-0.5.0-py3-none-any.whl (8.5 kB view details)

Uploaded Python 3

File details

Details for the file python-sa-gwdata-0.5.0.tar.gz.

File metadata

  • Download URL: python-sa-gwdata-0.5.0.tar.gz
  • Upload date:
  • Size: 7.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for python-sa-gwdata-0.5.0.tar.gz
Algorithm Hash digest
SHA256 ea41a8588393f8c5c7c34b4dfb1e3fac2c7b1c9ef882b711ae1b76dc43a79377
MD5 355ad4e889de45eded0c0a7ac85d99c9
BLAKE2b-256 e09b7c014d16f63da664c37fb74527f38c69dd474dd9e4194dfe4a4c78b2d27c

See more details on using hashes here.

File details

Details for the file python_sa_gwdata-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: python_sa_gwdata-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 8.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for python_sa_gwdata-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f6843b24ca0aba50250bb9d33905f3b2bde0c822af015bb14db4aa04dffa79b2
MD5 b3a5f108686398e053f404a82e1ebf3b
BLAKE2b-256 31813d9a264b39558843904fc82a91a373d5299a763e92a642f256e53a896272

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page