Convenient access to `pynvml` (the library behind `nvidia-smi`)
Project description
py_smi
Installation
Install latest from pypi:
$ pip install python-smi
Links:
How to use
Here’s a quick demo of all the methods available:
from py_smi import NVML
nv = NVML()
nv.driver_version, nv.cuda_version
('535.183.06', '12.2')
All methods have a single parameter, which is the index of the GPU to get information about.
nv.info(0)
_Info(name='NVIDIA RTX A6000', serial='1322123048138', uuid='GPU-61e56e6f-2a64-c0f4-b26c-ab3ead0eed5b', persistence_mode=1, bus_id='00000000:01:00.0', display_active=0, performance_state=8, fan_speed=30, temperature=32, compute_mode=0)
[nv.mem(i) for i in range(3)]
[_Memory(free=2193.25, total=49140.0, used=46946.75),
_Memory(free=48672.4375, total=49140.0, used=467.5625),
_Memory(free=48672.4375, total=49140.0, used=467.5625)]
The index defaults to 0
.
nv.utilization()
_Utilization(gpu=0, memory=0, enc=0, dec=0)
nv.power()
_Power(usage=17.22, limit=300.0)
nv.clocks()
_Clocks(graphics=0, sm=0, mem=405)
nv.pcie_throughput()
_PCIeThroughput(rx=0.0, tx=0.0)
nv.processes()
[_ProcessInfo(pid=201084, name='/home/jhoward/miniconda3/bin/python3.12', memory=46476.0)]
nv.dmon()
_DMon(pwr=17.039, gtemp=32, sm=0, mem=0, enc=0, dec=0, mclk=405, pclk=0)
Contributing
I’ve added the obvious pieces based on how I use nvidia-smi
, but I’m
sure there’s missing useful features, so PRs are welcome! Note that this
is an nbdev project so the
source notebooks must be changed, rather than editing .py or .md files
directly.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
python_smi-0.0.2.tar.gz
(9.9 kB
view details)
Built Distribution
File details
Details for the file python_smi-0.0.2.tar.gz
.
File metadata
- Download URL: python_smi-0.0.2.tar.gz
- Upload date:
- Size: 9.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 01bbf3b72409e5fd569f4bc13234afb2109af7f1c3c552b5ddc468c0b92dcbc2 |
|
MD5 | 04313a81e65107e54ee1c3216f8698fe |
|
BLAKE2b-256 | b7a3f0e71c29f82fa7913981a68970b2c5bd36b8161fb55673fd0174f04d0428 |
File details
Details for the file python_smi-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: python_smi-0.0.2-py3-none-any.whl
- Upload date:
- Size: 9.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9c884088f8e8f0cd836dc4823cc594fae75c3fcd97c417d7985939c28083bf01 |
|
MD5 | 3adcc8cc195210d79fb5c97b6eeb8615 |
|
BLAKE2b-256 | c10338ef44241ef005a2302ee66a0cdf8266edd42f5e6b8fd32873d3d9ef92c2 |