Skip to main content

Convenient access to `pynvml` (the library behind `nvidia-smi`)

Project description

py_smi

Installation

Install latest from pypi:

$ pip install python-smi

Links:

How to use

Here’s a quick demo of all the methods available:

from py_smi import NVML
nv = NVML()
nv.driver_version, nv.cuda_version
('535.183.06', '12.2')

All methods have a single parameter, which is the index of the GPU to get information about.

nv.info(0)
_Info(name='NVIDIA RTX A6000', serial='1322123048138', uuid='GPU-61e56e6f-2a64-c0f4-b26c-ab3ead0eed5b', persistence_mode=1, bus_id='00000000:01:00.0', display_active=0, performance_state=8, fan_speed=30, temperature=32, compute_mode=0)
[nv.mem(i) for i in range(3)]
[_Memory(free=2193.25, total=49140.0, used=46946.75),
 _Memory(free=48672.4375, total=49140.0, used=467.5625),
 _Memory(free=48672.4375, total=49140.0, used=467.5625)]

The index defaults to 0.

nv.utilization()
_Utilization(gpu=0, memory=0, enc=0, dec=0)
nv.power()
_Power(usage=17.22, limit=300.0)
nv.clocks()
_Clocks(graphics=0, sm=0, mem=405)
nv.pcie_throughput()
_PCIeThroughput(rx=0.0, tx=0.0)
nv.processes()
[_ProcessInfo(pid=201084, name='/home/jhoward/miniconda3/bin/python3.12', memory=46476.0)]
nv.dmon()
_DMon(pwr=17.039, gtemp=32, sm=0, mem=0, enc=0, dec=0, mclk=405, pclk=0)

Contributing

I’ve added the obvious pieces based on how I use nvidia-smi, but I’m sure there’s missing useful features, so PRs are welcome! Note that this is an nbdev project so the source notebooks must be changed, rather than editing .py or .md files directly.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python_smi-0.0.2.tar.gz (9.9 kB view details)

Uploaded Source

Built Distribution

python_smi-0.0.2-py3-none-any.whl (9.2 kB view details)

Uploaded Python 3

File details

Details for the file python_smi-0.0.2.tar.gz.

File metadata

  • Download URL: python_smi-0.0.2.tar.gz
  • Upload date:
  • Size: 9.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for python_smi-0.0.2.tar.gz
Algorithm Hash digest
SHA256 01bbf3b72409e5fd569f4bc13234afb2109af7f1c3c552b5ddc468c0b92dcbc2
MD5 04313a81e65107e54ee1c3216f8698fe
BLAKE2b-256 b7a3f0e71c29f82fa7913981a68970b2c5bd36b8161fb55673fd0174f04d0428

See more details on using hashes here.

File details

Details for the file python_smi-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: python_smi-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 9.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for python_smi-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 9c884088f8e8f0cd836dc4823cc594fae75c3fcd97c417d7985939c28083bf01
MD5 3adcc8cc195210d79fb5c97b6eeb8615
BLAKE2b-256 c10338ef44241ef005a2302ee66a0cdf8266edd42f5e6b8fd32873d3d9ef92c2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page