Skip to main content

Python module containing system_verilog files for CV32E41P cpu.

Project description

pythondata-cpu-cv32e41p

Non-Python files needed for the cpu cv32e41p packaged into a Python module so they can be used with Python libraries and tools.

This is useful for usage with tools like LiteX.

The data files can be found under the Python module pythondata_cpu_cv32e41p. The pythondata_cpu_cv32e41p.data_location value can be used to find the files on the file system.

Example of getting the data file directly;

import pythondata_cpu_cv32e41p

my_data_file = "abc.txt"

with open(os.path.join(pythondata_cpu_cv32e41p.data_location, my_data_file)) as f:
    print(f.read())

Example of getting the data file using litex.data.find API;

from pythondata_cpu_cv32e41p import data_file

my_data_file = "abc.txt"

with open(data_file(my_data_file)) as f:
    print(f.read())

The data files come from https://github.com/openhwgroup/cv32e41p and are imported using git subtrees to the directory pythondata_cpu_cv32e41p/system_verilog.

Installing

Directly from git repository

Manually

You can install the package manually, however this is not recommended.

git clone https://github.com/litex-hub/pythondata-cpu-cv32e41p.git
cd pythondata-cpu-cv32e41p
sudo python setup.py install

Using pip with git repository

You can use pip to install the data package directly from github using;

pip install --user git+https://github.com/litex-hub/pythondata-cpu-cv32e41p.git

If you want to install for the whole system rather than just the current user, you need to remove the --user argument and run as sudo like so;

sudo pip install git+https://github.com/litex-hub/pythondata-cpu-cv32e41p.git

You can install a specific revision of the repository using;

pip install --user git+https://github.com/litex-hub/pythondata-cpu-cv32e41p.git@<tag>
pip install --user git+https://github.com/litex-hub/pythondata-cpu-cv32e41p.git@<branch>
pip install --user git+https://github.com/litex-hub/pythondata-cpu-cv32e41p.git@<hash>

With requirements.txt file

Add to your Python requirements.txt file using;

-e git+https://github.com/litex-hub/pythondata-cpu-cv32e41p.git

To use a specific revision of the repository, use the following;

-e https://github.com/litex-hub/pythondata-cpu-cv32e41p.git@<hash>

Via PyPi

Using pip

pip install --user pythondata-cpu-cv32e41p

With requirements.txt file

Add to your Python requirements.txt file using;

pythondata-cpu-cv32e41p

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pythondata-cpu-cv32e41p-0.0.post1861.tar.gz (935.0 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file pythondata-cpu-cv32e41p-0.0.post1861.tar.gz.

File metadata

  • Download URL: pythondata-cpu-cv32e41p-0.0.post1861.tar.gz
  • Upload date:
  • Size: 935.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for pythondata-cpu-cv32e41p-0.0.post1861.tar.gz
Algorithm Hash digest
SHA256 60d0585ace3e9fe812c8fe22724cb487f6629bbb2a64a35e754779abb5a32ced
MD5 b43c30442107db818c04087987979bad
BLAKE2b-256 d0970dfe7f66a068b8a42c44c715f7e88ab488f8a1fb39cf3d9cbd338044237e

See more details on using hashes here.

File details

Details for the file pythondata_cpu_cv32e41p-0.0.post1861-py3-none-any.whl.

File metadata

  • Download URL: pythondata_cpu_cv32e41p-0.0.post1861-py3-none-any.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for pythondata_cpu_cv32e41p-0.0.post1861-py3-none-any.whl
Algorithm Hash digest
SHA256 d982525c4e646b2057f6d9f9d087c780922e62fd6e8cc59bc379ed98eb3ebe5c
MD5 61e685c90fed9c0ff6d43d5381dcff29
BLAKE2b-256 7c87e710d5df053cd8ad0460bc0d1528ae910949636d7721b6e79a8b3b67acba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page