Skip to main content

Python module containing system_verilog files for CV32E41P cpu.

Project description

pythondata-cpu-cv32e41p

Non-Python files needed for the cpu cv32e41p packaged into a Python module so they can be used with Python libraries and tools.

This is useful for usage with tools like LiteX.

The data files can be found under the Python module pythondata_cpu_cv32e41p. The pythondata_cpu_cv32e41p.data_location value can be used to find the files on the file system.

Example of getting the data file directly;

import pythondata_cpu_cv32e41p

my_data_file = "abc.txt"

with open(os.path.join(pythondata_cpu_cv32e41p.data_location, my_data_file)) as f:
    print(f.read())

Example of getting the data file using litex.data.find API;

from pythondata_cpu_cv32e41p import data_file

my_data_file = "abc.txt"

with open(data_file(my_data_file)) as f:
    print(f.read())

The data files come from https://github.com/openhwgroup/cv32e41p and are imported using git subtrees to the directory pythondata_cpu_cv32e41p/system_verilog.

Installing

Directly from git repository

Manually

You can install the package manually, however this is not recommended.

git clone https://github.com/litex-hub/pythondata-cpu-cv32e41p.git
cd pythondata-cpu-cv32e41p
sudo python setup.py install

Using pip with git repository

You can use pip to install the data package directly from github using;

pip install --user git+https://github.com/litex-hub/pythondata-cpu-cv32e41p.git

If you want to install for the whole system rather than just the current user, you need to remove the --user argument and run as sudo like so;

sudo pip install git+https://github.com/litex-hub/pythondata-cpu-cv32e41p.git

You can install a specific revision of the repository using;

pip install --user git+https://github.com/litex-hub/pythondata-cpu-cv32e41p.git@<tag>
pip install --user git+https://github.com/litex-hub/pythondata-cpu-cv32e41p.git@<branch>
pip install --user git+https://github.com/litex-hub/pythondata-cpu-cv32e41p.git@<hash>

With requirements.txt file

Add to your Python requirements.txt file using;

-e git+https://github.com/litex-hub/pythondata-cpu-cv32e41p.git

To use a specific revision of the repository, use the following;

-e https://github.com/litex-hub/pythondata-cpu-cv32e41p.git@<hash>

Via PyPi

Using pip

pip install --user pythondata-cpu-cv32e41p

With requirements.txt file

Add to your Python requirements.txt file using;

pythondata-cpu-cv32e41p

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pythondata-cpu-cv32e41p-0.0.post1862.tar.gz (936.6 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file pythondata-cpu-cv32e41p-0.0.post1862.tar.gz.

File metadata

  • Download URL: pythondata-cpu-cv32e41p-0.0.post1862.tar.gz
  • Upload date:
  • Size: 936.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for pythondata-cpu-cv32e41p-0.0.post1862.tar.gz
Algorithm Hash digest
SHA256 c416f51804bcd6870592446bd9f226b7a0d1abbc2fd6e30fa26c0df9368cb7ff
MD5 ca3b6b8c7625f47eee551f4f30efe16f
BLAKE2b-256 67af0874ea02b82e11ddf58edf115c426ff94e2f5a10a4ebbc709f4fdf8a12eb

See more details on using hashes here.

File details

Details for the file pythondata_cpu_cv32e41p-0.0.post1862-py3-none-any.whl.

File metadata

  • Download URL: pythondata_cpu_cv32e41p-0.0.post1862-py3-none-any.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for pythondata_cpu_cv32e41p-0.0.post1862-py3-none-any.whl
Algorithm Hash digest
SHA256 2064e12d48eb2519bf972fc29fb91c2a3b44f76a63dbfc8dc05a561e9a10290f
MD5 9f963fdd539597c796c3ac26372e9575
BLAKE2b-256 bd823d2357dc775a123520ebe9bcd04a01fdc1b312bf3f995a5cbeb34a8db90f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page