Skip to main content

Python module containing system_verilog files for CV32E41P cpu.

Project description

pythondata-cpu-cv32e41p

Non-Python files needed for the cpu cv32e41p packaged into a Python module so they can be used with Python libraries and tools.

This is useful for usage with tools like LiteX.

The data files can be found under the Python module pythondata_cpu_cv32e41p. The pythondata_cpu_cv32e41p.data_location value can be used to find the files on the file system.

Example of getting the data file directly;

import pythondata_cpu_cv32e41p

my_data_file = "abc.txt"

with open(os.path.join(pythondata_cpu_cv32e41p.data_location, my_data_file)) as f:
    print(f.read())

Example of getting the data file using litex.data.find API;

from pythondata_cpu_cv32e41p import data_file

my_data_file = "abc.txt"

with open(data_file(my_data_file)) as f:
    print(f.read())

The data files come from https://github.com/openhwgroup/cv32e41p and are imported using git subtrees to the directory pythondata_cpu_cv32e41p/system_verilog.

Installing

Directly from git repository

Manually

You can install the package manually, however this is not recommended.

git clone https://github.com/litex-hub/pythondata-cpu-cv32e41p.git
cd pythondata-cpu-cv32e41p
sudo python setup.py install

Using pip with git repository

You can use pip to install the data package directly from github using;

pip install --user git+https://github.com/litex-hub/pythondata-cpu-cv32e41p.git

If you want to install for the whole system rather than just the current user, you need to remove the --user argument and run as sudo like so;

sudo pip install git+https://github.com/litex-hub/pythondata-cpu-cv32e41p.git

You can install a specific revision of the repository using;

pip install --user git+https://github.com/litex-hub/pythondata-cpu-cv32e41p.git@<tag>
pip install --user git+https://github.com/litex-hub/pythondata-cpu-cv32e41p.git@<branch>
pip install --user git+https://github.com/litex-hub/pythondata-cpu-cv32e41p.git@<hash>

With requirements.txt file

Add to your Python requirements.txt file using;

-e git+https://github.com/litex-hub/pythondata-cpu-cv32e41p.git

To use a specific revision of the repository, use the following;

-e https://github.com/litex-hub/pythondata-cpu-cv32e41p.git@<hash>

Via PyPi

Using pip

pip install --user pythondata-cpu-cv32e41p

With requirements.txt file

Add to your Python requirements.txt file using;

pythondata-cpu-cv32e41p

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pythondata-cpu-cv32e41p-0.0.post1864.tar.gz (937.1 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file pythondata-cpu-cv32e41p-0.0.post1864.tar.gz.

File metadata

  • Download URL: pythondata-cpu-cv32e41p-0.0.post1864.tar.gz
  • Upload date:
  • Size: 937.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for pythondata-cpu-cv32e41p-0.0.post1864.tar.gz
Algorithm Hash digest
SHA256 2e86bc529abc5ec8ae913b3ca8a69d77f080e94b74fa2bce64245e514270fc85
MD5 2077e1411a7d4f6bf60615ddd52dce0a
BLAKE2b-256 17d64bf0b0f847dbac786c5287571718e4b3229b9b8eb264d122a37556f2ac2d

See more details on using hashes here.

File details

Details for the file pythondata_cpu_cv32e41p-0.0.post1864-py3-none-any.whl.

File metadata

  • Download URL: pythondata_cpu_cv32e41p-0.0.post1864-py3-none-any.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for pythondata_cpu_cv32e41p-0.0.post1864-py3-none-any.whl
Algorithm Hash digest
SHA256 ba8269d15ec213ae5af26a1566d660be63755439648354e547085376f177322c
MD5 2c7181892bd750793824ba32ee8d0665
BLAKE2b-256 7f0f156164d86ae771cc0f31ab19b9d876cc2a621bbbd331e8c24577c2a4ad50

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page