Skip to main content

Fast CGRA Placement

Project description

Thunder

PyPI version PyPI - Wheel

Thunder is a high-performance CGRA placement engine. It is uses multi-processing to speed up the placement. Users can also use AWS lambda to enable high parallelism if desired (C++ lambda invocation coming soon).

Requirement

  • CMake 3.9+

  • g++-7/clang-6 or above

Install

To install from source, simply do

mkdir build
cd build
cmake .. && make -j

Thunder also has a complete Python binding available, to use the Python binding, simply do

pip install pythunder

You can see the example code in example folder.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pythunder-0.4.3.tar.gz (343.7 kB view details)

Uploaded Source

Built Distributions

pythunder-0.4.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

pythunder-0.4.3-cp310-cp310-macosx_10_15_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pythunder-0.4.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

pythunder-0.4.3-cp39-cp39-macosx_10_15_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pythunder-0.4.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

pythunder-0.4.3-cp38-cp38-macosx_10_15_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

pythunder-0.4.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

pythunder-0.4.3-cp37-cp37m-macosx_10_15_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

pythunder-0.4.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64 manylinux: glibc 2.5+ x86-64

pythunder-0.4.3-cp36-cp36m-macosx_10_14_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file pythunder-0.4.3.tar.gz.

File metadata

  • Download URL: pythunder-0.4.3.tar.gz
  • Upload date:
  • Size: 343.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.13

File hashes

Hashes for pythunder-0.4.3.tar.gz
Algorithm Hash digest
SHA256 2cea25b3c85c40606549faa84f1c6b31b049d6539c4331fbcab4b0dd58c05ebf
MD5 6d913170a81600297f3a0239c6c78ad8
BLAKE2b-256 d102f3a67cbc62d2f955ce879616ebebcc4747924bfad04c4dffe9fc3302621a

See more details on using hashes here.

File details

Details for the file pythunder-0.4.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pythunder-0.4.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 86608daaa8f1a947cb6e2720929460733894d92896b961935f45814877c70784
MD5 c1c65cf94ab6608c7d623410d7eae138
BLAKE2b-256 0a398be974148aa3cfbb39ba3bfbbaefd32303b0e9896d359ec6b01d50622115

See more details on using hashes here.

File details

Details for the file pythunder-0.4.3-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pythunder-0.4.3-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 28495e8e4ab356aa98dd0bbd1e2c68e7f282bfec985feb150f5d2c9240451f3b
MD5 d3e3580f90ed9c7fd2ffc908db87622e
BLAKE2b-256 5bdf9375cb1f5cab38e8047175fc52c70570262b78b87dc8ee5d12ea7216b1c5

See more details on using hashes here.

File details

Details for the file pythunder-0.4.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pythunder-0.4.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7784d88c3f17ba62f2efa10f0fe77084af48417f397d7b4124b255877b512431
MD5 4a68bbf83916e84bda93d6d7d6928230
BLAKE2b-256 1bd735497a6694d94d5de7092bc86e7288304f56dab766e02fb055f1c63c732d

See more details on using hashes here.

File details

Details for the file pythunder-0.4.3-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pythunder-0.4.3-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 eedb03f4883c9b79602b8466151659b8327b15ee167b56c87f9f5d0dd7418623
MD5 ef8a07b5f629442695c552ed168661dd
BLAKE2b-256 13e825658a1356a4f90380f6552c2f10ac7dca47ff76124edb72199c249532ab

See more details on using hashes here.

File details

Details for the file pythunder-0.4.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pythunder-0.4.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0dd51aa6c27e434baeb372de7d5f713f59567c3bf734857c2794fa5c20782fff
MD5 4ceefb8c24ae08e4639e67a3da7d373e
BLAKE2b-256 12c8c8a24267a929fd623862fd844dc0b1877218d54e8226004c10433c97d575

See more details on using hashes here.

File details

Details for the file pythunder-0.4.3-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pythunder-0.4.3-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 15f8abac48c3c5e2005f551ffb7497eaa9466c26d3489efe7226f3444596c8e3
MD5 3b16e10a61d781c857f2be1e62094a4b
BLAKE2b-256 ed3a3aa6518f7cea4ef4be7d2fe9e36f0bc7d567463ff07f5650e21d763e57fb

See more details on using hashes here.

File details

Details for the file pythunder-0.4.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pythunder-0.4.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b837dbd0c41210a7f3d6190be0508f8f4551646db6ef653780313686c27890df
MD5 2c2cfa80deb8f928e135d79eba657c47
BLAKE2b-256 db16690f820634b7a6bd6f493f933e3a90bcc466adcd549b24e3c57c4bb1db66

See more details on using hashes here.

File details

Details for the file pythunder-0.4.3-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pythunder-0.4.3-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 fa7b08014cadef787743c7cfd133599db579c7c79269862b81ab7bb67ef980ca
MD5 408494f81709cddecbc67a8bbb3880b4
BLAKE2b-256 e68b9bffa99a61b58451001c47323d9d2480a2ec5ff9803cc8ae4c3d20c325d3

See more details on using hashes here.

File details

Details for the file pythunder-0.4.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pythunder-0.4.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3c2daff94fa3e69523cf989dc765f77aad43dd1f14ddee4dbc4eeeb2dd9ec154
MD5 a5a39459e0d77d35a8c896356445435d
BLAKE2b-256 c25b71701f589f847949372f329be85d516b4891ea593f35a24f8d2fe8ba1cb8

See more details on using hashes here.

File details

Details for the file pythunder-0.4.3-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pythunder-0.4.3-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.12 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.15

File hashes

Hashes for pythunder-0.4.3-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e2e7888280fb9bb9cbe5540de01ade714597857db6e94c9885ee178fa34847a9
MD5 9c30d26aa6187ec1be800a7bc19059b4
BLAKE2b-256 6a27652dd221f20a5c8ab87c9317ec31f92bd782a9e2d7fd579f9cf092ba774f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page