Skip to main content

Utils for data python project

Project description

pytils

Utils for data python projects. Simple, straightforward, but time saving.

  • pickledays - decorator of class. Save the object state to the filesystem after it's initialization for some defined time. Load object after another call.
  • singleton - decorator of class. Share object to all calls. There will be only one instance.
  • logger - log the info messages to file, stream and discord.
  • log - decorator of function. Log the function call into the logger.
  • configurator - additional method for Dynaconf, which create variable in settings file.
  • pandas_table - additional method for pandas, which save the DataFrame to specific sheet. Differs from standard df.to_excel by saving other sheets.

Installation

From the PiPy:

pip install pytils-functions

Directly from github:

pip install git+https://github.com/Whisperes/pytils.git

How to log

Discord logs

Straight logs

Log to the handlers:

  • discord webhook,
  • streamhandler
  • timerotation file.

For each handler you can set your own log level in the settings.toml file in your project (see Dynaconf package)

from pytils.logger import logger

logger.debug("this is a debugging message")
logger.success("this is a success message")
logger.info("this is an informational message")
logger.warning("this is a warning message")
logger.notice("this is a notice message")
logger.error("this is an error message")
logger.critical("this is a critical message")
logger.log(89, "this is a number message")

How to decorate functions for logs

from pytils.logger import log

@log()
def my_function(a=[1,3], b=2, c=3):
    //do something

answer = my_function([11, 'beta'], 2, c=3)

It will be loged like this:

2022-09-02 18:13:25 my-pc |[3812] DEBUG Processing my_function: ([11, 'beta'], 2), {'c': 3}

2022-09-02 18:13:25 my-pc |[3812] SUCCESS my_function: ([11, 'beta'], 2), {'c': 3}

Add log level

Additional levels added to logging module:

  • SUCCESS (15)

  • NOTICE (25)

    from pytils.logger import addLoggingLevel

    addLoggingLevel('MY_LOG_LEVEL', 45)

Cashe

Cashe object to the disk

from pytils.pickler import pickledays

@pickledays(period=2)
class A:
    def __init__(self, var):
        self.var = var

a = A(2)

Object A will be saved for 2 days. New call A(2) will take the state of object from pickle file. Req: object have to be immutable.

No duplicates

from pytils.singleton import Singleton_args


@Singleton_args
class A:
    def __init__(self, var):
        self.var = var

a = A(2)

Just singleton this. Your object with sspecific set of args will be be the only one through the whole code.

Retry errors

@retry(retries=5, delay=1)
def example_function():
    import random
    if random.random() < 0.8:
        raise ValueError("Random error")
    else:
        return('True')



example_function()

Decorate function with failing possibility. Delay in seconds.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytils-functions-0.1.10.tar.gz (24.8 kB view details)

Uploaded Source

Built Distribution

pytils_functions-0.1.10-py3-none-any.whl (26.7 kB view details)

Uploaded Python 3

File details

Details for the file pytils-functions-0.1.10.tar.gz.

File metadata

  • Download URL: pytils-functions-0.1.10.tar.gz
  • Upload date:
  • Size: 24.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for pytils-functions-0.1.10.tar.gz
Algorithm Hash digest
SHA256 16c81ba8ed4f8bd932235ac6dc9e6a33987cbb5a7592eec411035a51ec38b142
MD5 9c87ac069b13e3525b2a95f7138f0149
BLAKE2b-256 919cf11ee3493da00234a3815117e64dbab8c6d65a0c949ff967ea828a2cabae

See more details on using hashes here.

File details

Details for the file pytils_functions-0.1.10-py3-none-any.whl.

File metadata

File hashes

Hashes for pytils_functions-0.1.10-py3-none-any.whl
Algorithm Hash digest
SHA256 0323fd7e4ad20d19134c98c486b10a3ad36aa8284a4ccb4c4e49d4639667370e
MD5 35ca830d5e71a78d41fafca3e288b108
BLAKE2b-256 92e163a616494c1e9bc217f5744efdeede07bfd244b58607fc6017e779f2a14c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page