Skip to main content

Python module for interfacing with the CQC tket library of quantum software

Project description

Pytket is a python module for interfacing with TKET, an optimising compiler for quantum circuits developed by Quantinuum. In addition to pytket there are several extension modules for accessing a range of quantum hardware and classical simulators. The extension modules also provide integration with several widely used quantum software tools.

The source code for the TKET compiler can be found in this github repository.

Installation

Installation is supported for Linux, MacOS and Windows. Installation requires python 3.9, 3.10 or 3.11.

To install run the pip command:

pip install pytket

See Installation troubleshooting for help with installation.

To install the pytket extension modules add a hyphen and the extension name to the command:

pip install pytket-quantinuum

For a list of pytket extensions see this page: https://cqcl.github.io/pytket-extensions/api/index.html.

Documentation and Examples

API reference: https://cqcl.github.io/tket/pytket/api/

To get started using pytket see the user manual.

For worked examples using TKET see our examples repository.

Support and Discussion

For bugs and feature requests we recommend creating an issue on the github repository.

User support: tket-support@cambridgequantum.com

For discussion, join the public slack channel here.

Mailing list: join here.

Citation

If you wish to cite TKET in any academic publications, we generally recommend citing our software overview paper for most cases.

If your work is on the topic of specific compilation tasks, it may be more appropriate to cite one of our other papers:

  • "On the qubit routing problem" for qubit placement (a.k.a. allocation) and routing (a.k.a. swap network insertion, connectivity solving). https://arxiv.org/abs/1902.08091 .
  • "Phase Gadget Synthesis for Shallow Circuits" for representing exponentiated Pauli operators in the ZX calculus and their circuit decompositions. https://arxiv.org/abs/1906.01734 .
  • "A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz" for sequencing of terms in Trotterisation and Pauli diagonalisation. https://arxiv.org/abs/2007.10515 .

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytket-1.13.0-cp311-cp311-win_amd64.whl (10.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

pytket-1.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pytket-1.13.0-cp311-cp311-macosx_11_0_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ x86-64

pytket-1.13.0-cp311-cp311-macosx_11_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pytket-1.13.0-cp310-cp310-win_amd64.whl (10.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytket-1.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pytket-1.13.0-cp310-cp310-macosx_11_0_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

pytket-1.13.0-cp310-cp310-macosx_11_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytket-1.13.0-cp39-cp39-win_amd64.whl (10.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

pytket-1.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pytket-1.13.0-cp39-cp39-macosx_11_0_x86_64.whl (10.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

pytket-1.13.0-cp39-cp39-macosx_11_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file pytket-1.13.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pytket-1.13.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pytket-1.13.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 998b1bd539f5ab977aefdbac70ed35e79764d1e30f777b8a4842d160dff5d2c0
MD5 6abe5f01aee32ee83e095df436de26a4
BLAKE2b-256 7ab4a056f713d3cd5140a8c3c43b94bef10e1e1ad561e140fd5ad81aa329714e

See more details on using hashes here.

File details

Details for the file pytket-1.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 52ae81e2a1aa12bacbd0a1655e79dfb43e1b7cc4cb439fa88b769288cf38b1e1
MD5 ccb43a231fe10c23ac5f3fdd37a3df5a
BLAKE2b-256 b1f2435406faf314342506ab22145e9c1c1d9d308463c5cf91cf26651e3a5bb1

See more details on using hashes here.

File details

Details for the file pytket-1.13.0-cp311-cp311-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.13.0-cp311-cp311-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 8da15fe1641f9feea67e96e28c2a1fd43a54d949bffd9fd8e5f269e05c591153
MD5 4e4b0481c5ccb4501ba82afc9cb3ba39
BLAKE2b-256 64d99b019bf6cf5c7d97f7713a015667990a07e1cf1bc306baa0ec7b9ff0274f

See more details on using hashes here.

File details

Details for the file pytket-1.13.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.13.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d3c73505a1dcec6739ce8003dc553434677fc19336b992c21ce66fb5fe0808d1
MD5 09ef4955ab38db6fae2f8473535f253a
BLAKE2b-256 1cbce4ee008cd92d313bdb87b454f8533c0f12265a11f5f5784b065f416c9ede

See more details on using hashes here.

File details

Details for the file pytket-1.13.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pytket-1.13.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pytket-1.13.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e6f9d09a3118bc0f1bc62c7caf7294f389bb5daf3944f5b902c69d884c8097ba
MD5 43a41e619124348f7233cc102efa63ff
BLAKE2b-256 ff5e0b2a32742e4dac3271faf241431dc422b1d66ae6e034400a61c2f6ade435

See more details on using hashes here.

File details

Details for the file pytket-1.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8cf30e979486e888eb2aba8a8762bf5030e6c1e3600a504354a3480c0e373983
MD5 07d58378321106cd097cbd989af43884
BLAKE2b-256 6da06b9cee5d78cf3d08923bad090a18da34c3e9ce564aca6c4de179e438d34f

See more details on using hashes here.

File details

Details for the file pytket-1.13.0-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.13.0-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 decf03beab7b9d0d2b0d523cd3c5b858e886b240a91a2a7ceb823cde1a7e4da6
MD5 7e877e5dc217075f8943ea4188236d62
BLAKE2b-256 7a515c107c228f9129146cbd7ec4d5d582d540d6732c9f69eae7bfc4510c3e83

See more details on using hashes here.

File details

Details for the file pytket-1.13.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.13.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2bd4276491c0f501822ba4ef880846d1c21eb6e17687a5facf1910f110d026ed
MD5 5a0139334a53bc78aca540d06a94d1bc
BLAKE2b-256 c953ba1e7d64cfee5d8d86e1bd39e2ddd670c464f43cb799fbc07e24f9c223a6

See more details on using hashes here.

File details

Details for the file pytket-1.13.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytket-1.13.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pytket-1.13.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7a286437f3df8e734c935f194340472aff98df01470920c8acf8b26a9268457d
MD5 54e4c61ab8c2158148e71ecfc536c163
BLAKE2b-256 7fe35738873798592f9a72c74b5855df22f9928674ce96eec2c6c7601c3d844b

See more details on using hashes here.

File details

Details for the file pytket-1.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d7bd383f3ee5b8674a517fd0ac5335eeecc111f055ed6ba4429c3dce117156a
MD5 c7b33b3b98e0f82009ea57500f3d4753
BLAKE2b-256 b944b2d216fa23e7133f52a957992ce015cda160163e417094636cac8beb6f57

See more details on using hashes here.

File details

Details for the file pytket-1.13.0-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.13.0-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 0e6d7ac88c7a2fdf762951135d91c705cfa07fd8a616e60ec99d196feb74815e
MD5 5ff701fa5013cc6d49be60b6bedd61c7
BLAKE2b-256 81ac6977682d0a8c3465a0f5d1b4e98b037af106a3c45bdc8c296c7ae1c21bb5

See more details on using hashes here.

File details

Details for the file pytket-1.13.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.13.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 394aac4425c25530e89e6d00eee21e9c74a95b3777dce01f8d2bbeb43dfe4d81
MD5 d2fc9fdb0d4c4f0e981fceb85ece98cf
BLAKE2b-256 492d7699501be803211ec90874ae05da64ed7baf5fe65a070ddde071b6fefd95

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page