Skip to main content

Python module for interfacing with the CQC tket library of quantum software

Project description

Pytket is a python module for interfacing with TKET, an optimising compiler for quantum circuits developed by Quantinuum. In addition to pytket there are several extension modules for accessing a range of quantum hardware and classical simulators. The extension modules also provide integration with several widely used quantum software tools.

The source code for the TKET compiler can be found in this github repository.

Installation

Installation is supported for Linux, MacOS and Windows. Installation requires python 3.9, 3.10 or 3.11.

To install run the pip command:

pip install pytket

See Installation troubleshooting for help with installation.

To install the pytket extension modules add a hyphen and the extension name to the command:

pip install pytket-quantinuum

For a list of pytket extensions see this page: https://cqcl.github.io/pytket-extensions/api/index.html.

Warning. There is a known issue with installing pytket in a conda environment on MacOS: you may not be able to install versions more recent then 1.11.0. The only known remedy is to use an official Python distribution instead.

Documentation and Examples

API reference: https://cqcl.github.io/tket/pytket/api/

To get started using pytket see the user manual.

For worked examples using TKET see our notebook examples.

Support and Discussion

For bugs and feature requests we recommend creating an issue on the github repository.

User support: tket-support@cambridgequantum.com

For discussion, join the public slack channel here.

Mailing list: join here.

Citation

If you wish to cite TKET in any academic publications, we generally recommend citing our software overview paper for most cases.

If your work is on the topic of specific compilation tasks, it may be more appropriate to cite one of our other papers:

  • "On the qubit routing problem" for qubit placement (a.k.a. allocation) and routing (a.k.a. swap network insertion, connectivity solving). https://arxiv.org/abs/1902.08091 .
  • "Phase Gadget Synthesis for Shallow Circuits" for representing exponentiated Pauli operators in the ZX calculus and their circuit decompositions. https://arxiv.org/abs/1906.01734 .
  • "A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz" for sequencing of terms in Trotterisation and Pauli diagonalisation. https://arxiv.org/abs/2007.10515 .

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytket-1.21.0rc0-cp311-cp311-win_amd64.whl (8.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

pytket-1.21.0rc0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pytket-1.21.0rc0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pytket-1.21.0rc0-cp311-cp311-macosx_11_0_arm64.whl (5.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pytket-1.21.0rc0-cp311-cp311-macosx_10_14_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

pytket-1.21.0rc0-cp310-cp310-win_amd64.whl (8.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytket-1.21.0rc0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pytket-1.21.0rc0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pytket-1.21.0rc0-cp310-cp310-macosx_11_0_arm64.whl (5.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytket-1.21.0rc0-cp310-cp310-macosx_10_14_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pytket-1.21.0rc0-cp39-cp39-win_amd64.whl (8.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

pytket-1.21.0rc0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pytket-1.21.0rc0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pytket-1.21.0rc0-cp39-cp39-macosx_11_0_arm64.whl (5.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pytket-1.21.0rc0-cp39-cp39-macosx_10_14_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

File details

Details for the file pytket-1.21.0rc0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pytket-1.21.0rc0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ec20b8f36edd3b1c72e39d1edc1b149b75596128bec16d1014469a030a35290d
MD5 d5d6ae5a806ffffd901adc00c0c722f5
BLAKE2b-256 87023cd52b652a09c82716dedcf5dae9d74c3ed768b1a8513b63e25164ccda81

See more details on using hashes here.

File details

Details for the file pytket-1.21.0rc0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.21.0rc0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b1c34d36cca4305c27bad722810d4ff0dd7e01105ccc7c7edc1176bde73aa7e3
MD5 bc39696be8fb17013c1ef8ccae984922
BLAKE2b-256 493d1feda30b74fcc1ed79682925e8eaf5128ef334bb35cf8a0e75094f97dfa1

See more details on using hashes here.

File details

Details for the file pytket-1.21.0rc0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pytket-1.21.0rc0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bc1d0f47b8f78c607e59eae6ac03e1e17fd465361ec2cb7a0e3d1fd5ccae1310
MD5 0cbb0441c5a8da9b276233683e66ebdb
BLAKE2b-256 231dc7e1b124f5bb61cf4afa0c1af3ebb19dc79b2858ab907ff7297ad5734b7a

See more details on using hashes here.

File details

Details for the file pytket-1.21.0rc0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.21.0rc0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d3add7a7115dde02362a92491a8712c48d0451aa87b156858277f93ba35d2e03
MD5 ae4caf78c14ff97338957fad794c5b31
BLAKE2b-256 005e2985dda7510ba63e20ee7028496b030e8bd8ba28689536623ccf6c03e975

See more details on using hashes here.

File details

Details for the file pytket-1.21.0rc0-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.21.0rc0-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3661b7c78b3b6c374824d871b027d96469ffe7729a23b95e2d2c5552018cb368
MD5 d3c70e769f5a03fafcf99f0cda8c69db
BLAKE2b-256 e19fe2990565092b5a99a90f44a058b67b6b4e4a2865f0d2ab4dc803f1d4fc9a

See more details on using hashes here.

File details

Details for the file pytket-1.21.0rc0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pytket-1.21.0rc0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8d2e8c3dcc6aab618034cda87925d7902dc322ce2a77937ae8e46dd75de5dc14
MD5 a2022ee6732a25d66afefad2476d3fb6
BLAKE2b-256 a614a6e11ded3c80616352c4327c1843e3d72165bb6970b587f514e3c82a2b08

See more details on using hashes here.

File details

Details for the file pytket-1.21.0rc0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.21.0rc0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f9d70e1c79e753f05b15459bd0ef8153d1159ad4b49c964d70180842795afd8
MD5 53408bd51b4d2918776705fcbc95fcd4
BLAKE2b-256 30c840c1b01d40ceec1cfeefa0c79a786934db2d5703dd917934c422c3123eca

See more details on using hashes here.

File details

Details for the file pytket-1.21.0rc0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pytket-1.21.0rc0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 48f69fa273398736acf7748b82b24b2297f49d8d6482b6c4114b6c3cef9c2247
MD5 eff92a574f2c1bf5496c2c31efaf447e
BLAKE2b-256 c5ca8ff13c8c5be1c57c3782acaf7327b392b5ecc4e48dcf90ab88cb8e61ec67

See more details on using hashes here.

File details

Details for the file pytket-1.21.0rc0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.21.0rc0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 feff32447f59ee1456faa0932d7e1c004074ade04dd5c10303c8536913753f71
MD5 598b50d2384727a870196db2addc0b72
BLAKE2b-256 94ef07978de6e47340fed397c448e2115de5f8b46f0e7cbc016a4c01c4deeeb9

See more details on using hashes here.

File details

Details for the file pytket-1.21.0rc0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.21.0rc0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 568fca95c3ab71c7ba382b29e4dfdfb03c39d08520d26445cb8364a3e5a3edce
MD5 de2adaf502fe75b4cfa8108b7d11073c
BLAKE2b-256 bad583a486a73575446690b20359e865c9e69f8612edc8d6326257c1fe62b032

See more details on using hashes here.

File details

Details for the file pytket-1.21.0rc0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pytket-1.21.0rc0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c8fc4c9970221efbbbfdb0247a734f6e9f2fee1aa8ba5951a8cc0ab256a45a0c
MD5 4460ee3e9c91ab630982bf3aa09d81df
BLAKE2b-256 371d88da9a0a88330cca31b3891639befeaa12259d569d11526de366a4cc8478

See more details on using hashes here.

File details

Details for the file pytket-1.21.0rc0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.21.0rc0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d44e4d260467aae49156edf0468c459741524428cc4d9a04ac57fc3531b6d278
MD5 1671f43f18c0cf12e3f44a52313419a4
BLAKE2b-256 70b3a3184b0d1344c8a64e8583e9b9040e173a6b8d35eb3198ccef7d89536e7f

See more details on using hashes here.

File details

Details for the file pytket-1.21.0rc0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pytket-1.21.0rc0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 04406d8fad09768684763e80bbe7a8b570ef1406197fd6bdfeb02c0e91b7d4be
MD5 0321fac4bb887cdfbdf719ec02fd366d
BLAKE2b-256 fafe3586f5ca12a330f7927432d2efcc8cf967f56ea403d3d85fb0333dc2ea20

See more details on using hashes here.

File details

Details for the file pytket-1.21.0rc0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.21.0rc0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 926b2c2cb7919d58dff01ba6a5f54f1d1b449c4184808ce6ba2e9bec8d586048
MD5 5b49506e2132db6b09c8c788580b75ef
BLAKE2b-256 3894d599343ae18ef84fc040fa334ceaec2fccc63940589ce0b2fe83bf7d1f33

See more details on using hashes here.

File details

Details for the file pytket-1.21.0rc0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.21.0rc0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5a5009ff29d6e9869645a5845e5e1c6fe8d1777cae8e75f30553270f8751a946
MD5 c9f08bea8e6c72459d9facb17139a3f7
BLAKE2b-256 cd766b8fcb6318dbbe396aed66f6a68556958feced9648b9c73003b7120f50d5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page