Skip to main content

Python module for interfacing with the CQC tket library of quantum software

Project description

Pytket is a python module for interfacing with TKET, an optimising compiler for quantum circuits developed by Quantinuum. In addition to pytket there are several extension modules for accessing a range of quantum hardware and classical simulators. The extension modules also provide integration with several widely used quantum software tools.

The source code for the TKET compiler can be found in this github repository.

Installation

Installation is supported for Linux, MacOS and Windows. Installation requires python 3.9, 3.10 or 3.11.

To install run the pip command:

pip install pytket

See Installation troubleshooting for help with installation.

To install the pytket extension modules add a hyphen and the extension name to the command:

pip install pytket-quantinuum

For a list of pytket extensions see this page: https://tket.quantinuum.com/api-docs/extensions.

Warning. There is a known issue with installing pytket in a conda environment on MacOS: you may not be able to install versions more recent then 1.11.0. The only known remedy is to use an official Python distribution instead.

Documentation and Examples

API reference: https://cqcl.github.io/tket/pytket/api/

To get started using pytket see the user manual.

For worked examples using TKET see our notebook examples.

Support and Discussion

For bugs and feature requests we recommend creating an issue on the github repository.

User support: tket-support@cambridgequantum.com

For discussion, join the public slack channel here.

Mailing list: join here.

Citation

If you wish to cite TKET in any academic publications, we generally recommend citing our software overview paper for most cases.

If your work is on the topic of specific compilation tasks, it may be more appropriate to cite one of our other papers:

  • "On the qubit routing problem" for qubit placement (a.k.a. allocation) and routing (a.k.a. swap network insertion, connectivity solving). https://arxiv.org/abs/1902.08091 .
  • "Phase Gadget Synthesis for Shallow Circuits" for representing exponentiated Pauli operators in the ZX calculus and their circuit decompositions. https://arxiv.org/abs/1906.01734 .
  • "A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz" for sequencing of terms in Trotterisation and Pauli diagonalisation. https://arxiv.org/abs/2007.10515 .

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytket-1.23.0rc1-cp311-cp311-win_amd64.whl (8.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pytket-1.23.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pytket-1.23.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pytket-1.23.0rc1-cp311-cp311-macosx_12_0_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

pytket-1.23.0rc1-cp311-cp311-macosx_12_0_arm64.whl (5.7 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

pytket-1.23.0rc1-cp310-cp310-win_amd64.whl (8.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytket-1.23.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pytket-1.23.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pytket-1.23.0rc1-cp310-cp310-macosx_12_0_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

pytket-1.23.0rc1-cp310-cp310-macosx_12_0_arm64.whl (5.7 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

pytket-1.23.0rc1-cp39-cp39-win_amd64.whl (8.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

pytket-1.23.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pytket-1.23.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pytket-1.23.0rc1-cp39-cp39-macosx_12_0_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

pytket-1.23.0rc1-cp39-cp39-macosx_12_0_arm64.whl (5.7 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file pytket-1.23.0rc1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pytket-1.23.0rc1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b0176172a1922df5069a6fb1442e7cd07b37d8dd7f358a739256ef0b6abf22c9
MD5 1b7e2613cb868738588ec0f1380aaecb
BLAKE2b-256 c2aa5a5da248a76c5acc4f78e8f3796f56b5a4506b8f6589ed05e858da3c8b33

See more details on using hashes here.

File details

Details for the file pytket-1.23.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.23.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5adfceb863c827fa7b0a629d974b8c315fcef40d790941e6ae956a61a123a9db
MD5 05e46e9f132b8b37d9b6d2721a8a49c2
BLAKE2b-256 f317b71afc46e700f913339b0dc9bb2564f85baedb645958d7d9c89066450e32

See more details on using hashes here.

File details

Details for the file pytket-1.23.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pytket-1.23.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dc006f83a443e607ec62bee40add10406e90ed991881520119860cbc53e4503e
MD5 e6d30811273d9847895aeedb1812567f
BLAKE2b-256 d1b1fb157e9f732e1f91183a8e04220c22659a49eceb866dac3b1263ed260232

See more details on using hashes here.

File details

Details for the file pytket-1.23.0rc1-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.23.0rc1-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 268615115126686ec5ee8ba2f52ad9df56ad12cb50570e1419e4da5af2256e02
MD5 1ff8cf4149e842226117a0f296eb245f
BLAKE2b-256 ea5df6acb1ab0f1cb62320760e5a4a3ba0223b1e843717ea1be0cec9d4ba188e

See more details on using hashes here.

File details

Details for the file pytket-1.23.0rc1-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.23.0rc1-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 6c932ca147cf6ca49ec454ca9d146b4a525f71d3dac867c88821148a5bc43c67
MD5 9a2ca4a45964843d6fa1586aa340d190
BLAKE2b-256 c1ff80b594e923666a8cbfd6ce9ad78126a74b636856df43a51e06e4b8ffbe88

See more details on using hashes here.

File details

Details for the file pytket-1.23.0rc1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pytket-1.23.0rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bd9804d3a8a71c17c51d94cc1471101955bed4012e9677a6dd55badf8719be39
MD5 27838678fdfda6d84b948e40abca8f56
BLAKE2b-256 73846b809f2117e0183a33d8dc8da8e4887eb71102fee93a4fa55d8a5397974c

See more details on using hashes here.

File details

Details for the file pytket-1.23.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.23.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b323c7f841e0f9e71cdee38fd190005a13d5300df4ae3432cec6b27b4f75a03
MD5 6fdea59e0ddd05498a64d966d58e13b1
BLAKE2b-256 1c4b52d6912222f733af82ec5900efc9dca3740900d180ee882a6a4bfc0ce668

See more details on using hashes here.

File details

Details for the file pytket-1.23.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pytket-1.23.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 df0c642dc9f4e2211fe0e3965bc1710e5ced74df720b2ce0d11b408980429ad0
MD5 76ce34ab5c531677632daea88d709e01
BLAKE2b-256 9c833ef801aeec4cff89de0dc08f2f4e17387ab02c8d4cb5f1d336723c8b3c1b

See more details on using hashes here.

File details

Details for the file pytket-1.23.0rc1-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.23.0rc1-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 bebce9a3ee8d0948aa5a9808e69eba777892a9ed88f3e5a09976ef3f4c9b2b70
MD5 6672bd34ec7d4415af1460024b9f7afc
BLAKE2b-256 5fbe5c4ce6cc99878f41238425f493f8c8b2aed1063ddaaabe0255834fb6acaf

See more details on using hashes here.

File details

Details for the file pytket-1.23.0rc1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.23.0rc1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f57f68eccdf0173a2ae02677b183aef23c3884673d1678b509838d906c858b9d
MD5 441f8c72386b78c8af296fe84abfc82b
BLAKE2b-256 8573d9c08f452a5ffd59f2dcdd9c8d4d8f1a320aea405c903671e958c870e559

See more details on using hashes here.

File details

Details for the file pytket-1.23.0rc1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pytket-1.23.0rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f514935a4a2b44d469fbf75b466b843089fdfb982c621a39cce7bd75b6f8eef2
MD5 5bc2d8d8b96a00a62d01b85aed07b6ad
BLAKE2b-256 75389d4abc4cf8d9218b857aaf341443b0184802a8ef4bd65ed57e2eecd71203

See more details on using hashes here.

File details

Details for the file pytket-1.23.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.23.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f5849c4c0ba100a7c59e503a51f46afa1dbdd9dbece58d8163ae9c6e1520921
MD5 d956414f4e95c8a19fc1c222e91de691
BLAKE2b-256 c6a2e8b300e1b26a1f7b625e4aab76f9bd2e58be850951d28b83709c7f782f8e

See more details on using hashes here.

File details

Details for the file pytket-1.23.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pytket-1.23.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9b4a4c326cb5edc7dd2b494dc419497b2113483983a685766078d79e936ba070
MD5 ad31a9ef78494f2b38067ef52f40e5c2
BLAKE2b-256 7290407f421c15448050958337c840f7e222c705093b76623ae2d6744059cc70

See more details on using hashes here.

File details

Details for the file pytket-1.23.0rc1-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.23.0rc1-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 a5423db5007506b7fcd9ec13ee4ef001a9a4b71c8dff749ca38056da11e76f3a
MD5 5df52e2349df1c87c68437cbb8865547
BLAKE2b-256 29f0260f4867384ffae72b1fbd728ea5f139ba3e3dcdeccc689913a81adcf124

See more details on using hashes here.

File details

Details for the file pytket-1.23.0rc1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.23.0rc1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 3df0c86e5a92493652a923146fcd46887313fb7186842bb5d18f81ffe780f67d
MD5 a496733d0fadca76c51a2de6f98601b9
BLAKE2b-256 8ed29c5da84e8390d275b39774cc657776d59355dabbec4cf17a7cd52dd7904f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page