Skip to main content

Python module for interfacing with the CQC tket library of quantum software

Project description

Pytket is a python module for interfacing with TKET, an optimising compiler for quantum circuits developed by Cambridge Quantum. In addition to pytket there are several extension modules for accessing a range of quantum hardware and classical simulators. The extension modules also provide integration with several widely used quantum software tools.

The source code for the TKET compiler can be found in this github repository.

Installation

Installation is supported for Linux, MacOS and Windows. Installation requires python 3.8, 3.9 or 3.10.

To install run the pip command:

pip install pytket

See Installation troubleshooting for help with installation.

To install the pytket extension modules add a hyphen and the extension name to the command:

pip install pytket-quantinuum

For a list of pytket extensions see this page: https://cqcl.github.io/pytket-extensions/api/index.html.

Documentation and Examples

API reference: https://cqcl.github.io/tket/pytket/api/

To get started using pytket see the user manual.

For worked examples using TKET see our examples repository.

Support and Discussion

For bugs and feature requests we recommend creating an issue on the github repository.

User support: tket-support@cambridgequantum.com

For discussion, join the public slack channel here.

Mailing list: join here.

Citation

If you wish to cite TKET in any academic publications, we generally recommend citing our software overview paper for most cases.

If your work is on the topic of specific compilation tasks, it may be more appropriate to cite one of our other papers:

  • "On the qubit routing problem" for qubit placement (a.k.a. allocation) and routing (a.k.a. swap network insertion, connectivity solving). https://arxiv.org/abs/1902.08091 .
  • "Phase Gadget Synthesis for Shallow Circuits" for representing exponentiated Pauli operators in the ZX calculus and their circuit decompositions. https://arxiv.org/abs/1906.01734 .
  • "A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz" for sequencing of terms in Trotterisation and Pauli diagonalisation. https://arxiv.org/abs/2007.10515 .

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytket-1.3.0-cp310-cp310-win_amd64.whl (9.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytket-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pytket-1.3.0-cp310-cp310-macosx_11_0_arm64.whl (8.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytket-1.3.0-cp310-cp310-macosx_10_14_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pytket-1.3.0-cp39-cp39-win_amd64.whl (9.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

pytket-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pytket-1.3.0-cp39-cp39-macosx_11_0_arm64.whl (8.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pytket-1.3.0-cp39-cp39-macosx_10_14_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

pytket-1.3.0-cp38-cp38-win_amd64.whl (9.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

pytket-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pytket-1.3.0-cp38-cp38-macosx_11_0_arm64.whl (8.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pytket-1.3.0-cp38-cp38-macosx_10_14_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pytket-1.3.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pytket-1.3.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 9.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 686bb3b4b03ff7afa37a703eefb11d413b90a17f8e67678ba2ca114c641acbba
MD5 bb60d44469d87977b05033a271567a58
BLAKE2b-256 2d6200688957ea7a36262db79500d20c4267ee7759ea104e274d0372b57e0935

See more details on using hashes here.

File details

Details for the file pytket-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4a501140994004748c66a364251ffea33b7e10b01dae60ee875a880c463e2f0c
MD5 41345bc88f6af90372e5be6946b0009f
BLAKE2b-256 257cb5040d1462ac3cee5a7e5367253e7752b1461eb648f4a37870f0778d80a5

See more details on using hashes here.

File details

Details for the file pytket-1.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7851579d06101f79dd51fbdbcb3f3da54cb395f02d683c96420a4918f29c05b8
MD5 c553a6dd8ed7b83c4d7142e19f8815c3
BLAKE2b-256 36796ed54c85e7d0ca8d1b2a89b606261f9dd4b52cfe49628e145b3b6e923348

See more details on using hashes here.

File details

Details for the file pytket-1.3.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.3.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 cf4eac6aaa5ccfd1603d49399eaf55c1ac49ff2dd1cee3c80dc20d050ddcd300
MD5 2ea72bba9cf8e5d64e9587eba6c779d2
BLAKE2b-256 ab9062cf2e3c65b97f9efbca3e91e6fd83e482e3315844064ebca1cb5881c976

See more details on using hashes here.

File details

Details for the file pytket-1.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytket-1.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 9.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1ce317c8c8136ca55a3bd3cee5d2d8b1e0ff1acb3325136d7927574ddce4086d
MD5 c9e11324e45b0d0c26069a69d98d87dd
BLAKE2b-256 a24b28889f571ed3ca274ae2810b6747f3b42d03032db561a3ba95d447379af2

See more details on using hashes here.

File details

Details for the file pytket-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d5b16486141c8290bb7af2e51f08bdc90da92f5626969b77138562be2801a4f
MD5 3aa0250e8c1873a8b96c6ac58df2c31e
BLAKE2b-256 c11418e8ec58bf9124ae815bdb65f6d60e51328e32c885f25c24c056c5add821

See more details on using hashes here.

File details

Details for the file pytket-1.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0572869a164ab77f9cf868c1dce2631dbbf6951a3299a0cfc3470a59e343757e
MD5 78efdbd316d13a80e35a69630d168e03
BLAKE2b-256 8a34a379afd10b8b561229e56096f303658e124bddfe39fb74ee0f32fa8d5b5d

See more details on using hashes here.

File details

Details for the file pytket-1.3.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.3.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8b3ac7f2b74c746c303cdf0b7b8037cd9f7b18ffcf0d7307008ae0748ea2f690
MD5 69ab7daa6517f39a46bf3b39484f67d2
BLAKE2b-256 d479ba409249e8a01790c29198fa1da037be02a753c5e23d1469a6b30e454a4b

See more details on using hashes here.

File details

Details for the file pytket-1.3.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pytket-1.3.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 9.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a05e60224d3737b1330aaeb354148c14546e50b470a09cc7b45e0cd7e7459cfa
MD5 f9c49498a0b05c59767a489c5f9a43b3
BLAKE2b-256 62be8ba6386f8ed064d3edd3eb4ff2408adaadb6c3c537c6b4cc8445da48ae0b

See more details on using hashes here.

File details

Details for the file pytket-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ba6cc02b70bc6577acadfbae9bde94b761ade5a0a94c6b4de1613c7797249c88
MD5 2b0f7a994aaa8eac31f966dce66e3708
BLAKE2b-256 d2a3be38e1d871cde27de2dd4155ae83d1243e008b94d332b34e609d38fad25e

See more details on using hashes here.

File details

Details for the file pytket-1.3.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.3.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f89c7263f473122c7c16a67c8466eb14aae529144ac7b42f1464f05050411652
MD5 ed123db7af7118f28ed78fce13c35481
BLAKE2b-256 8996288f861f05904b2ea6b89e93bcf0cc6b6457e69841b60073b9de06d7362a

See more details on using hashes here.

File details

Details for the file pytket-1.3.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.3.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1df8d2b26b60b5c3302d48581ab5d774110436f545fc587a550201e2e01d30ad
MD5 1d66d42651ad39fb18dfb140c30496e3
BLAKE2b-256 e80410e2017f88fe86107ad6db1f3943d03ab9184fe5c09e3c3eccdc4afd8711

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page