Skip to main content

Quantum computing toolkit and interface to the TKET compiler

Project description

Pytket is a python module for interfacing with TKET, a quantum computing toolkit and optimising compiler developed by Quantinuum. In addition to pytket there are several pytket extension modules for accessing a range of quantum hardware and classical simulators. The extension modules also allow circuit conversion between several widely used quantum software tools including qiskit, cirq and pennylane.

The source code for the TKET compiler can be found in this github repository.

Installation

Installation is supported for Linux, MacOS and Windows. Installation requires python 3.10, 3.11 or 3.12.

To install run the pip command:

pip install pytket

See Installation troubleshooting for help with installation.

To install the pytket extension modules add a hyphen and the extension name to the command:

pip install pytket-quantinuum

For a list of pytket extensions see this page: https://tket.quantinuum.com/api-docs/extensions.

Warning. There is a known issue with installing pytket in a conda environment on MacOS: you may not be able to install versions more recent then 1.11.0. The only known remedy is to use an official Python distribution instead.

Documentation and Examples

API reference: https://tket.quantinuum.com/api-docs/

To get started using pytket see the user manual.

For worked examples using TKET see our notebook examples.

Support and Discussion

For bugs and feature requests we recommend creating an issue on the github repository.

User support: tket-support@quantinuum.com

For discussion, join the public slack channel here.

There is also a pytket tag on quantum computing stack exchange.

Mailing list: join here.

Citation

If you wish to cite TKET in any academic publications, we generally recommend citing our software overview paper for most cases.

If your work is on the topic of specific compilation tasks, it may be more appropriate to cite one of our other papers:

  • "On the qubit routing problem" for qubit placement (a.k.a. allocation) and routing (a.k.a. swap network insertion, connectivity solving). https://arxiv.org/abs/1902.08091 .
  • "Phase Gadget Synthesis for Shallow Circuits" for representing exponentiated Pauli operators in the ZX calculus and their circuit decompositions. https://arxiv.org/abs/1906.01734 .
  • "A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz" for sequencing of terms in Trotterisation and Pauli diagonalisation. https://arxiv.org/abs/2007.10515 .

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytket-1.32.0rc0-cp312-cp312-win_amd64.whl (8.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

pytket-1.32.0rc0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

pytket-1.32.0rc0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (7.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

pytket-1.32.0rc0-cp312-cp312-macosx_12_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.12 macOS 12.0+ x86-64

pytket-1.32.0rc0-cp312-cp312-macosx_12_0_arm64.whl (6.2 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

pytket-1.32.0rc0-cp311-cp311-win_amd64.whl (8.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

pytket-1.32.0rc0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

pytket-1.32.0rc0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (7.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

pytket-1.32.0rc0-cp311-cp311-macosx_12_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

pytket-1.32.0rc0-cp311-cp311-macosx_12_0_arm64.whl (6.1 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

pytket-1.32.0rc0-cp310-cp310-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytket-1.32.0rc0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

pytket-1.32.0rc0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (7.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ ARM64 manylinux: glibc 2.28+ ARM64

pytket-1.32.0rc0-cp310-cp310-macosx_12_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

pytket-1.32.0rc0-cp310-cp310-macosx_12_0_arm64.whl (6.0 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

File details

Details for the file pytket-1.32.0rc0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pytket-1.32.0rc0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f9ba904f023b9038b4dc2fec89d8a64d060992d61ab5b867b70e11db74414cb1
MD5 e986941697f80dd8ddd9f56362309db2
BLAKE2b-256 d508ddeb32eed6f6a85db0df74d3aa2944ead42289fc9b173ac113443a0d0428

See more details on using hashes here.

File details

Details for the file pytket-1.32.0rc0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.32.0rc0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 6d1cb301c5de63e20e9021d7ad0e81d494c2d3ee990743d52ddc9cf247a49aba
MD5 856427567e50138143163f9d07cd5bf7
BLAKE2b-256 0f8734af800c3b2fe9ce01643d008d833b9c9423267dfcafc1838fe12c62ef5d

See more details on using hashes here.

File details

Details for the file pytket-1.32.0rc0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pytket-1.32.0rc0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 13a7c3a08523c7f792f8af155a1798afc81ea5154a777ba36f784d95bf85d7e9
MD5 4d2b9f91aa4de817d3cd39ee76861e05
BLAKE2b-256 abe6ffad2854edf909ab26defbee15e2ac39ddfe8eefdb7e41c4be2bdf80aa74

See more details on using hashes here.

File details

Details for the file pytket-1.32.0rc0-cp312-cp312-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.32.0rc0-cp312-cp312-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 2b6ab1011b1df6f876d7e8ff1657629f00de16e45a48d82caefd480d7785f64c
MD5 ad6846835a81277a6534b1a74f03977b
BLAKE2b-256 433e7c5c4e408383b501114593fae319b8fbdedf8740b0a9f5f325d592354bd8

See more details on using hashes here.

File details

Details for the file pytket-1.32.0rc0-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.32.0rc0-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 1fb36b6e92cf6ccf8e6c585219e0b9001260f4a8352a70e18cf1b00f3d658ed0
MD5 7acd6de5ae485273699f2ae285f65486
BLAKE2b-256 a2ec1c0c68f8c3e7feb63445771924c698be5b977b429342fe3ffcbcc2261a7e

See more details on using hashes here.

File details

Details for the file pytket-1.32.0rc0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pytket-1.32.0rc0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 00dd80bb511a4ec70fb22d71d9daa2556e40bf30c926fda14d39ccd2941ad8bd
MD5 8f01e86ac85980cbea374d81a1998726
BLAKE2b-256 a810e5149e1fabba6c9907415cdf0a7473bf146aa048c0d0080d735a58330f7e

See more details on using hashes here.

File details

Details for the file pytket-1.32.0rc0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.32.0rc0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 33abe69a3cbde102f9b8ad5ab1e4b3a92c71603dc57a2827ae8cec535fc960c4
MD5 fbbe252b328ae043ccfe5328034c4890
BLAKE2b-256 71b2618921c344b6293d9dca40610b505221dc318897aa6f3d7cb64fa82b0006

See more details on using hashes here.

File details

Details for the file pytket-1.32.0rc0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pytket-1.32.0rc0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8e9221f51c6d870de57dae6ec19df22830dace565f7f67d733f66dbd6c63d355
MD5 cf79b19db90fbb2ab04330c390328fa0
BLAKE2b-256 9582f8ebac940dc5b594a0895f7d2ebcd4a550417022bf7e29517b23719d9845

See more details on using hashes here.

File details

Details for the file pytket-1.32.0rc0-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.32.0rc0-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 baab67c70be72dfdd3682e56a046d824dfc933eb5ce595d19cf052fa04f0fcbb
MD5 c0ef52c8646e3e1be760a702b95eaf80
BLAKE2b-256 bd2293d11024840f3709c435e068efa3b514f1c53b330f35660ce774ccabd300

See more details on using hashes here.

File details

Details for the file pytket-1.32.0rc0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.32.0rc0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 b5f68aaedfe6d2450c3bfc7a7e8121d1fe9ab5b9bf8031dca3ba342196690996
MD5 be0b1808b9cfeb9fd1bdcb0daf2cc5c6
BLAKE2b-256 9088fe43a81330ce1aed97c6028a5c45fb4f29738955509681efb3bc499e7946

See more details on using hashes here.

File details

Details for the file pytket-1.32.0rc0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pytket-1.32.0rc0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bd71c85e3ae53c93b68f2f48e17c0a9cc0ae3ee0998842e4fb3fd558eceedc0b
MD5 91d613ad0e1caee63ca49e4a7b381e24
BLAKE2b-256 cdfab52000634eebf65b8bfdb2c487c7ec231fad2788832ef66a61b0332aab3b

See more details on using hashes here.

File details

Details for the file pytket-1.32.0rc0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.32.0rc0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 496003063af19de835cbea6570df9eba998c1f6e914e80bccfa146e9bfbea641
MD5 3ebbf0ec68024bb5f7115a9cede18045
BLAKE2b-256 31059d67f5e1e82ac6120bb16ec7bf8608949f51fd741c5bdf8c7fd99683b6e3

See more details on using hashes here.

File details

Details for the file pytket-1.32.0rc0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pytket-1.32.0rc0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 bc1551466180dadf14d324c6aeeb24159eadf7cd4e5c22619b4f07762eff096c
MD5 a0b2505d7c20f749b7fb9d133e9b6075
BLAKE2b-256 44383ed724244dbe062b673cca6257e6343644bd79494c4c56e0fd31876727d9

See more details on using hashes here.

File details

Details for the file pytket-1.32.0rc0-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.32.0rc0-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 3c566da2f13fa24dc726782683f4ca71cc3918996e408213d1434157fed44271
MD5 34a035f4342390f95f626f10fd7faab0
BLAKE2b-256 327c39da563fd023db46e665a6a0c2ed7c5cc312105f0157ecfa98dba32f354b

See more details on using hashes here.

File details

Details for the file pytket-1.32.0rc0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.32.0rc0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 e494c3481f19cb236f89b5139c63e447c56c1777f01008367ef5c1905a1198c2
MD5 cd6219049e2c78186197cd2f93ea3ba6
BLAKE2b-256 8a952f677d3c2adaa3262d353eadeb90cc513461bc4d3d6bfb70d870eb8030a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page