Skip to main content

Python module for interfacing with the CQC tket library of quantum software

Project description

Pytket is a python module for interfacing with TKET, an optimising compiler for quantum circuits developed by Cambridge Quantum. In addition to pytket there are several extension modules for accessing a range of quantum hardware and classical simulators. The extension modules also provide integration with several widely used quantum software tools.

The source code for the TKET compiler can be found in this github repository.

Installation

Installation is supported for Linux, MacOS and Windows. Installation requires python 3.8, 3.9 or 3.10.

To install run the pip command:

pip install pytket

See Installation troubleshooting for help with installation.

To install the pytket extension modules add a hyphen and the extension name to the command:

pip install pytket-quantinuum

For a list of pytket extensions see this page: https://cqcl.github.io/pytket-extensions/api/index.html.

Documentation and Examples

API reference: https://cqcl.github.io/tket/pytket/api/

To get started using pytket see the user manual.

For worked examples using TKET see our examples repository.

Support and Discussion

For bugs and feature requests we recommend creating an issue on the github repository.

User support: tket-support@cambridgequantum.com

For discussion, join the public slack channel here.

Mailing list: join here.

Citation

If you wish to cite TKET in any academic publications, we generally recommend citing our software overview paper for most cases.

If your work is on the topic of specific compilation tasks, it may be more appropriate to cite one of our other papers:

  • "On the qubit routing problem" for qubit placement (a.k.a. allocation) and routing (a.k.a. swap network insertion, connectivity solving). https://arxiv.org/abs/1902.08091 .
  • "Phase Gadget Synthesis for Shallow Circuits" for representing exponentiated Pauli operators in the ZX calculus and their circuit decompositions. https://arxiv.org/abs/1906.01734 .
  • "A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz" for sequencing of terms in Trotterisation and Pauli diagonalisation. https://arxiv.org/abs/2007.10515 .

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytket-1.4.1-cp310-cp310-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytket-1.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pytket-1.4.1-cp310-cp310-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytket-1.4.1-cp310-cp310-macosx_10_14_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pytket-1.4.1-cp39-cp39-win_amd64.whl (10.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

pytket-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pytket-1.4.1-cp39-cp39-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pytket-1.4.1-cp39-cp39-macosx_10_14_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

pytket-1.4.1-cp38-cp38-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

pytket-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pytket-1.4.1-cp38-cp38-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pytket-1.4.1-cp38-cp38-macosx_10_14_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pytket-1.4.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pytket-1.4.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.4.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0bd8c2a2225a9dae4ae97e40b5b0ef773cc1f14c73c288df3408bcc9de08d65f
MD5 c3d1bdeb5a0f4a4c2596dbc86382305c
BLAKE2b-256 654f951f1a38b29b485a0f5886a151de775e2a34b61e6b3ad3aff9d0e94c3191

See more details on using hashes here.

File details

Details for the file pytket-1.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bdfaed2ef9826613ee8c58411af27b7e32d358c935b179aaed85f76ea8a60bd2
MD5 9a06d7e09ad70d62ca5c3cbcda895dbd
BLAKE2b-256 abc4a151c3d6a3e45b2a3dd7773a25f5431f99444ff02e06e0e1dff8aa6be650

See more details on using hashes here.

File details

Details for the file pytket-1.4.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.4.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4e8e7c654718977efa7fc299106114a6a5fd72c66f947a3006e013b6dda27c56
MD5 dcfd246e5b5311e57157ac04df40c5ac
BLAKE2b-256 33f0c076a6c8b0e35edd3afc5ad5dadedff8b7934241c52a10ccc9c9706f89b8

See more details on using hashes here.

File details

Details for the file pytket-1.4.1-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.4.1-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 04a14dcf03354f850b4d334dbd5531fda77f44597e8e2472395f0fceeef52442
MD5 817d93a55e73678216b5d27227d188d8
BLAKE2b-256 467944602c4592c98e881170b4e0e79e281c79c952b98dafe49a6993f0b5cd98

See more details on using hashes here.

File details

Details for the file pytket-1.4.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytket-1.4.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.4.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 21592616b4040b9423ddf8a05eb91968897c9848df047062e0a9379f95c3e70f
MD5 1c6daa8c89da0ab756f192454473b9a7
BLAKE2b-256 c3f965800ed12ddb00c733c2fa2ec2e93a7b3990fa38cd723481fbb11c73254c

See more details on using hashes here.

File details

Details for the file pytket-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0550828be600b35c6f75aa2ce4c8c3874a94204bd1aeb86c789c5d8ef109a923
MD5 647aa35d6d0ba86347c61f5e0472a4ab
BLAKE2b-256 901389aef71ebf0409792be408a3886c4902ad3b467c0aedfb7b018aa67b6994

See more details on using hashes here.

File details

Details for the file pytket-1.4.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.4.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 58524243135e84b4b71d57accb15a14aa10e1f307969985599c6f8cf43ffa8ec
MD5 b039fa6abdcbac850e278f61ad40fd67
BLAKE2b-256 8dc0a0dc3d1fb757bc0876c31ad5970676ba08ae977e909f229f4256924fcf18

See more details on using hashes here.

File details

Details for the file pytket-1.4.1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.4.1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8a03e47cc72462e3183176b3cbf7ecde4c86e97c0cb29b988e74bc16a67872fb
MD5 a60ffd184e8c9f9564171a86d51adc25
BLAKE2b-256 a77fb4069c2ae1f6ec1c0245a2589d3fbd4a6c2524b16f90c239031776f763be

See more details on using hashes here.

File details

Details for the file pytket-1.4.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pytket-1.4.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.4.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 87e2f73487b23fcc6512146eaea90acb8db5b3062d6b8e3b986ef5abda98b107
MD5 8d8e9df54f0646bafffec36159893231
BLAKE2b-256 c24983b7f767154789d9e42186a36e5bee01dd3cf915adb842937f4246e72d71

See more details on using hashes here.

File details

Details for the file pytket-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b1ac517f8d48f3e2c6b6e75c9caaa0a5ca3898988a3c897cd2e46924a4d80e10
MD5 b3e9366e15e578c464df71487b3830cb
BLAKE2b-256 4ae2807a69f528da952a2ef2a7c1a260f746ee83951d5876c84397d21c65fac3

See more details on using hashes here.

File details

Details for the file pytket-1.4.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.4.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f47bfbcdc94b694cd45610fd759c0c7ecaba7a516981fa4dea5740ed8ee710c7
MD5 21e2ce2d924df86e54fb8b5ea1248bc5
BLAKE2b-256 5424ae7597edb8ce89556d5ec392235cffb61140423d7092f82e86556d3351ff

See more details on using hashes here.

File details

Details for the file pytket-1.4.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.4.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6f40129783ad6d540fd05860f8e40bf38d41ec2204662495f6424492380fde6e
MD5 8747c9ef6aad053860100eb280bfc070
BLAKE2b-256 ff6618b30df93e23e439ce075a1c5128283e7337188b0983b40c4e48952b8b9c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page