Skip to main content

Python module for interfacing with the CQC tket library of quantum software

Project description

Pytket is a python module for interfacing with TKET, an optimising compiler for quantum circuits developed by Cambridge Quantum. In addition to pytket there are several extension modules for accessing a range of quantum hardware and classical simulators. The extension modules also provide integration with several widely used quantum software tools.

The source code for the TKET compiler can be found in this github repository.

Installation

Installation is supported for Linux, MacOS and Windows. Installation requires python 3.8, 3.9 or 3.10.

To install run the pip command:

pip install pytket

See Installation troubleshooting for help with installation.

To install the pytket extension modules add a hyphen and the extension name to the command:

pip install pytket-quantinuum

For a list of pytket extensions see this page: https://cqcl.github.io/pytket-extensions/api/index.html.

Documentation and Examples

API reference: https://cqcl.github.io/tket/pytket/api/

To get started using pytket see the user manual.

For worked examples using TKET see our examples repository.

Support and Discussion

For bugs and feature requests we recommend creating an issue on the github repository.

User support: tket-support@cambridgequantum.com

For discussion, join the public slack channel here.

Mailing list: join here.

Citation

If you wish to cite TKET in any academic publications, we generally recommend citing our software overview paper for most cases.

If your work is on the topic of specific compilation tasks, it may be more appropriate to cite one of our other papers:

  • "On the qubit routing problem" for qubit placement (a.k.a. allocation) and routing (a.k.a. swap network insertion, connectivity solving). https://arxiv.org/abs/1902.08091 .
  • "Phase Gadget Synthesis for Shallow Circuits" for representing exponentiated Pauli operators in the ZX calculus and their circuit decompositions. https://arxiv.org/abs/1906.01734 .
  • "A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz" for sequencing of terms in Trotterisation and Pauli diagonalisation. https://arxiv.org/abs/2007.10515 .

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytket-1.4.2-cp310-cp310-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytket-1.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pytket-1.4.2-cp310-cp310-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytket-1.4.2-cp310-cp310-macosx_10_14_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pytket-1.4.2-cp39-cp39-win_amd64.whl (10.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

pytket-1.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pytket-1.4.2-cp39-cp39-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pytket-1.4.2-cp39-cp39-macosx_10_14_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

pytket-1.4.2-cp38-cp38-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

pytket-1.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pytket-1.4.2-cp38-cp38-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pytket-1.4.2-cp38-cp38-macosx_10_14_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pytket-1.4.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pytket-1.4.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.4.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 954bc294f06409ea028e0321d084bc21af719b595bfd3b20f4879e025b25ef36
MD5 8d12ba78021d9d413ef95348feb5ba33
BLAKE2b-256 1a37bb5c2c0a85b65766bf3e8b3c627c18019d9ce54e5a42689219e57c6513b1

See more details on using hashes here.

File details

Details for the file pytket-1.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ed7d7031f64a0845f32c655c8d66cc5eccefd2206893b257fbe1e851dc410b0
MD5 db771cc1d831bdacebbf047cee43db2a
BLAKE2b-256 8cf2e6214cf597e20947fbad12f2312b90c1793a3e7fefb69e8cd47e66d526ab

See more details on using hashes here.

File details

Details for the file pytket-1.4.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.4.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d9991c076f5c9699ec93ab3a08219275bfad72d8b487b39c20e51d433243a781
MD5 a2c3053537166a9bb9797720ad79aa44
BLAKE2b-256 acdf8c384d0d2b8d46ff8b07ffdea395825397c06daa1a43617b90f4da4edd8e

See more details on using hashes here.

File details

Details for the file pytket-1.4.2-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.4.2-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3f76c135548b0de48265f3070cacf51be5aff2c9590e5838deb3a9a2b8b3fec2
MD5 3c75b2b2a6cbf6cddc0c38ffac76c677
BLAKE2b-256 cd2a17836b47696b4d1139c229f4dc8e6aa085b045f3246640afc85ded208611

See more details on using hashes here.

File details

Details for the file pytket-1.4.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytket-1.4.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.4.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a7bf8e07aa02d95a4247e3fc7a7a8e02c02a718db3b6c624ae611d55c0e81a04
MD5 33f26982fe1459e3dab10d019817eff1
BLAKE2b-256 a00a02f337f3787111624c7ed92913fd35b7193bc71fbf49cc29cde7c4750135

See more details on using hashes here.

File details

Details for the file pytket-1.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ceac0a3f85a9d4a33c3c6e2f033299d4626d273476cc70f4cfda6c9d98304d7
MD5 d51af077e3cb362f410ed0b4bc052bfa
BLAKE2b-256 95615fe0f0cd47d0145824468f0fe9562ad9262b65f8e79314ad6fc7e0e51999

See more details on using hashes here.

File details

Details for the file pytket-1.4.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.4.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 013443113cb166ca5a76a454a40e426358e0227ba3bd44fabcf6810bcabc075a
MD5 c4dcc17d0b758b0496158d43b0c2cf80
BLAKE2b-256 541ddecd56e93bbd77d9c19f09fab175115088b06193bb83af32bd5d215f1b1d

See more details on using hashes here.

File details

Details for the file pytket-1.4.2-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.4.2-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2ee80558498ec2853a45f31fac9a2fbcb7b34d977989bb4785d25c55b05f5e8c
MD5 c1e9834c4039d4cb946f42c134c0d314
BLAKE2b-256 add895c074bf980a4ea0d3278526cd2602ff15340a919b461d88f85f01c55985

See more details on using hashes here.

File details

Details for the file pytket-1.4.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pytket-1.4.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.4.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2ca3ece4753090c1c51e66503e0b1dfd1b5b1ccd273fa1610cfb4d6504127328
MD5 7f5f18372f17b3c8f0175905ee280a59
BLAKE2b-256 943ea8d20e62d039175023c63c3d0912942c30d7bb9798b1f559be47ce522696

See more details on using hashes here.

File details

Details for the file pytket-1.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95436728a03b1160afc4189c3ccb1a3807225af7d273359ad2f6a1a61fb30ae8
MD5 e996bb37c1027dddb59d983908205c56
BLAKE2b-256 e6d2ca996459359dad41ef98153b7566d05535a4a6eeb70275279d67c5525090

See more details on using hashes here.

File details

Details for the file pytket-1.4.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.4.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 28802b5622b94c06281b296dc4159b5aa677d33d7dedfb236cdfc08c1b753723
MD5 f09b8c68e1b6b13f090592a0a53456fb
BLAKE2b-256 c3a3e752be5b682122aa2b6194270267d6ce0c54878f129d6076ac7c8fc0cf22

See more details on using hashes here.

File details

Details for the file pytket-1.4.2-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.4.2-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 48bd0090881a7ca79120553759e06b533ad72634edc682015bdab8ad21a6d564
MD5 dbca67c52306ec891d819a7a6e73429b
BLAKE2b-256 0da8c393c4e01e1abba7452134e49076c430229825df44521546a7866cd5e647

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page