Skip to main content

Python module for interfacing with the CQC tket library of quantum software

Project description

Pytket is a python module for interfacing with TKET, an optimising compiler for quantum circuits developed by Cambridge Quantum. In addition to pytket there are several extension modules for accessing a range of quantum hardware and classical simulators. The extension modules also provide integration with several widely used quantum software tools.

The source code for the TKET compiler can be found in this github repository.

Installation

Installation is supported for Linux, MacOS and Windows. Installation requires python 3.8, 3.9 or 3.10.

To install run the pip command:

pip install pytket

See Installation troubleshooting for help with installation.

To install the pytket extension modules add a hyphen and the extension name to the command:

pip install pytket-quantinuum

For a list of pytket extensions see this page: https://cqcl.github.io/pytket-extensions/api/index.html.

Documentation and Examples

API reference: https://cqcl.github.io/tket/pytket/api/

To get started using pytket see the user manual.

For worked examples using TKET see our examples repository.

Support and Discussion

For bugs and feature requests we recommend creating an issue on the github repository.

User support: tket-support@cambridgequantum.com

For discussion, join the public slack channel here.

Mailing list: join here.

Citation

If you wish to cite TKET in any academic publications, we generally recommend citing our software overview paper for most cases.

If your work is on the topic of specific compilation tasks, it may be more appropriate to cite one of our other papers:

  • "On the qubit routing problem" for qubit placement (a.k.a. allocation) and routing (a.k.a. swap network insertion, connectivity solving). https://arxiv.org/abs/1902.08091 .
  • "Phase Gadget Synthesis for Shallow Circuits" for representing exponentiated Pauli operators in the ZX calculus and their circuit decompositions. https://arxiv.org/abs/1906.01734 .
  • "A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz" for sequencing of terms in Trotterisation and Pauli diagonalisation. https://arxiv.org/abs/2007.10515 .

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytket-1.4.3-cp310-cp310-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytket-1.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pytket-1.4.3-cp310-cp310-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytket-1.4.3-cp310-cp310-macosx_10_14_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pytket-1.4.3-cp39-cp39-win_amd64.whl (10.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

pytket-1.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pytket-1.4.3-cp39-cp39-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pytket-1.4.3-cp39-cp39-macosx_10_14_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

pytket-1.4.3-cp38-cp38-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

pytket-1.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pytket-1.4.3-cp38-cp38-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pytket-1.4.3-cp38-cp38-macosx_10_14_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pytket-1.4.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pytket-1.4.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.4.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2e433a98fdbff518f301038c29b7490e0ec35027fd05457bcd1d7a3542ba018a
MD5 65a6cc2777b5d6e1eb14b1e598b10c57
BLAKE2b-256 4505431ba8b8d97f50427f5b612cec4e9fc50893c59aa0b390becfe93dbb9b7b

See more details on using hashes here.

File details

Details for the file pytket-1.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e823f5ab8189abd852422311135c61ef44d7afd9ca0e9dde22ac171cfc7a8dd2
MD5 2eec14bc2aede95188949684f4277387
BLAKE2b-256 b5ef46e44c27a7ad63d1af89d4dc2804f9b8676ba318aed12eee270a6e24cd9a

See more details on using hashes here.

File details

Details for the file pytket-1.4.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.4.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 761a8c5c6478c72c08a7763a1bae44c51924756b7078fccae739a178246d0f29
MD5 f37896384c8f2d964bbfa7ddf52da8d7
BLAKE2b-256 3fc031501b1e79c548e822a09e0875d1445fa11ff4235d1eaa967444d24e8029

See more details on using hashes here.

File details

Details for the file pytket-1.4.3-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.4.3-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7e15b9b51fafd822e4ef1e37a81980a85aad4b031d50d51b34cfbdefa98202ec
MD5 4d800bfc25335b08f4b046bd1a1a7526
BLAKE2b-256 44b8b8e76e278d6732c57c5812966cdd8a592bd4ecf438738968190144cdeeae

See more details on using hashes here.

File details

Details for the file pytket-1.4.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytket-1.4.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.4.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c4c1c6041e9136c421ad8df05b1f88a9e61c392d4b71b6edc97427f32dd68221
MD5 224d4caf03785589024969dc4588d4a9
BLAKE2b-256 f1baba074418099a590afd5eceb6a1a8011df4033b78d0ea6550edcdfb8590f4

See more details on using hashes here.

File details

Details for the file pytket-1.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7cd3cb70bef9662b48008a60a8001d9a839ff272ce7ee230502e0466946de03
MD5 b92459c93d96b0b07ad78d780617fc73
BLAKE2b-256 c0e5dcd42fd7b2fbde2afc10fbc7ce91c532b6c5ffd336b37f1ed8cce778131c

See more details on using hashes here.

File details

Details for the file pytket-1.4.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.4.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 55a86f2db27b76a06e7ecc4d0f9be6c8806df64993d00833829f9e443806a196
MD5 117b926a9c53440b88218af43922e1bd
BLAKE2b-256 0cb7a2697e521b4affed45b3158f95cfde2fbafb23d4cc29604a40bb9f05355c

See more details on using hashes here.

File details

Details for the file pytket-1.4.3-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.4.3-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7f60291062a36ec8a834f5185e345fb00960308691b70186af77b7f054da2e75
MD5 a02e2139f868c8303abf90abb12e85d9
BLAKE2b-256 67d0605cd9effd0c49667160fdb33d1cdcf124da25a31626b2dab54dacb7cc2a

See more details on using hashes here.

File details

Details for the file pytket-1.4.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pytket-1.4.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.4.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 725b847984054dfff3d49e5f83bdd0472bb69c33f6f001762f6741e774484b7a
MD5 96b21ba699da5e24db21e2ddfc8db3e2
BLAKE2b-256 4108410275b1a6d13e0c37eac2e884cc02950efecd0a404196decb876e323433

See more details on using hashes here.

File details

Details for the file pytket-1.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 afabdcdad988a3043e2efb5e537f22df518ecf67a8501f23aa9c5e6d7a4c172c
MD5 eef5b4b73ffd054ccb385d9be2561f15
BLAKE2b-256 12f6e5059553c68870edfe777a9b3e03f4a0d9d093bd08aab421ceb7d87ce579

See more details on using hashes here.

File details

Details for the file pytket-1.4.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.4.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 640e3872b30e8658688a15310c807219822d26ab458d9fa9bad941f3c253cef2
MD5 5206ea91b4b9629045a0aef5b30c816c
BLAKE2b-256 491b21b373915ed17f672dff9a005186e448630b34beefc48e0c0e00fa9782b8

See more details on using hashes here.

File details

Details for the file pytket-1.4.3-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.4.3-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 08caa08bdd8ed9bb6839967570e4a5cf8a1be9521b624becca610dd6cb0fd425
MD5 4e625e5fbe61cf90fbb939b729310b1b
BLAKE2b-256 fcac5ff1b7fd910ef6c43ef0021b4abd2b855edc542b3035461ceef3dec80c0d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page