Skip to main content

Python module for interfacing with the CQC tket library of quantum software

Project description

Pytket is a python module for interfacing with TKET, an optimising compiler for quantum circuits developed by Cambridge Quantum. In addition to pytket there are several extension modules for accessing a range of quantum hardware and classical simulators. The extension modules also provide integration with several widely used quantum software tools.

The source code for the TKET compiler can be found in this github repository.

Installation

Installation is supported for Linux, MacOS and Windows. Installation requires python 3.8, 3.9 or 3.10.

To install run the pip command:

pip install pytket

See Installation troubleshooting for help with installation.

To install the pytket extension modules add a hyphen and the extension name to the command:

pip install pytket-quantinuum

For a list of pytket extensions see this page: https://cqcl.github.io/pytket-extensions/api/index.html.

Documentation and Examples

API reference: https://cqcl.github.io/tket/pytket/api/

To get started using pytket see the user manual.

For worked examples using TKET see our examples repository.

Support and Discussion

For bugs and feature requests we recommend creating an issue on the github repository.

User support: tket-support@cambridgequantum.com

For discussion, join the public slack channel here.

Mailing list: join here.

Citation

If you wish to cite TKET in any academic publications, we generally recommend citing our software overview paper for most cases.

If your work is on the topic of specific compilation tasks, it may be more appropriate to cite one of our other papers:

  • "On the qubit routing problem" for qubit placement (a.k.a. allocation) and routing (a.k.a. swap network insertion, connectivity solving). https://arxiv.org/abs/1902.08091 .
  • "Phase Gadget Synthesis for Shallow Circuits" for representing exponentiated Pauli operators in the ZX calculus and their circuit decompositions. https://arxiv.org/abs/1906.01734 .
  • "A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz" for sequencing of terms in Trotterisation and Pauli diagonalisation. https://arxiv.org/abs/2007.10515 .

Project details


Release history Release notifications | RSS feed

This version

1.5.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytket-1.5.0-cp310-cp310-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytket-1.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pytket-1.5.0-cp310-cp310-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytket-1.5.0-cp310-cp310-macosx_10_14_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pytket-1.5.0-cp39-cp39-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pytket-1.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pytket-1.5.0-cp39-cp39-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pytket-1.5.0-cp39-cp39-macosx_10_14_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

pytket-1.5.0-cp38-cp38-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

pytket-1.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pytket-1.5.0-cp38-cp38-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pytket-1.5.0-cp38-cp38-macosx_10_14_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pytket-1.5.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pytket-1.5.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 98a80a4f3b0beac1f350f6feaa4bb0dc80846845b0f32aff30293cc77d7da775
MD5 db6d73ea6c39b19016b0f1b3019aeb21
BLAKE2b-256 03b9ca0eb9f68e621d3114884524f8dd6815944a9e5bfada75b021878fe7ed91

See more details on using hashes here.

File details

Details for the file pytket-1.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ab279bffc8821fdc9df5e3c9d4efb88b2cc9a17dfc427b5c0542074abd056944
MD5 1ad00e93b0b232f8138674e90cb14418
BLAKE2b-256 cbdec498af86a0254f304858310094fe0c407ac43b9fb9150add5c337fe19116

See more details on using hashes here.

File details

Details for the file pytket-1.5.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.5.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5b47553b686cc395a2a85852dc51e09228a21c5d09c37616f61b95adc4d6a712
MD5 84b98ce22d69a93ae0500f5ba408a34c
BLAKE2b-256 ce4206463d6c641a398787066dd37fd78b0777ab130af4ff6b0425269ad32423

See more details on using hashes here.

File details

Details for the file pytket-1.5.0-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.5.0-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c6455976291addb218bebd57f65d1e1915648f0a661bb2ea433b8e69ea2fe29f
MD5 fc021d5afb2036a0285ec542a36340f1
BLAKE2b-256 bd91712cc49003a831f924f1ca0b00ca6192d543c0f2153888a222fe1c4e2873

See more details on using hashes here.

File details

Details for the file pytket-1.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytket-1.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 deec82e9306bdc49579bcba1e63b91e69552fa52700b20fabeff3c9e0e4b1fd5
MD5 36c0ac033efa9561bb1fb6fc9d70346e
BLAKE2b-256 c10219392109ba099d706e620b584011384a312476f0d8ccb4f7a2ed434d4361

See more details on using hashes here.

File details

Details for the file pytket-1.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c69fc28bb34568fbe4b7839c96f9f3b869d194e14db41cfa37413a120826752f
MD5 98837d9ca69c7be44c5681e44baacc91
BLAKE2b-256 69aa3d0bcb70e7f5e9b06203b3c42e608549c9382bbf0f73bc780672db8979fe

See more details on using hashes here.

File details

Details for the file pytket-1.5.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.5.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0e60d78df0f4e3fe3d822fa66c5d67ea6d47195d391825073489264ce6b76a0e
MD5 15b92fc444a08d5fbadcca91606befdd
BLAKE2b-256 c72289fea15a5024169a42eaa195a26b2f80a112f5f9fe819c8524cc828a1139

See more details on using hashes here.

File details

Details for the file pytket-1.5.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.5.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0550585b1ef09c03ef336f748d4ff71a2d9e8e6de90ff26a5e5cc1ba34a81431
MD5 bf74e30f2fbdae813e03042d41ea97e7
BLAKE2b-256 b0287fe9e89d11fc01998997fd97147718e7983d18a757f7ef9f1d205b11872f

See more details on using hashes here.

File details

Details for the file pytket-1.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pytket-1.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c6778f6434edd6916966b8078d63517a26d1ab03f99b97d383bbb71f5546cf79
MD5 323562e3d85b3ad406ad3e866d23b719
BLAKE2b-256 042bb8d6026cf46d614d79bb228ac390b014a3dd3d1e52e867460b4fc8b9210f

See more details on using hashes here.

File details

Details for the file pytket-1.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0dafdc18c69358fafbe2f88c73dd296dd2e1a2ba23e5073c03c6193f9730c19e
MD5 74bb55af96bdba3d6ae044df00ff3763
BLAKE2b-256 3ade76596b908e32aec950873fc2b785974c3a3b3c9ce734b4b5f21de0308d4a

See more details on using hashes here.

File details

Details for the file pytket-1.5.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.5.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 046bdcddcd5a12cd9e34c5d1aacdd38abd25a22b988d2135febc3430c394b5ad
MD5 7d7c99d86ba98fa07125f2bd712de147
BLAKE2b-256 a8a853b45aa4a49064da51425fae5513e487ca03eb57df493bedc383daf36ed6

See more details on using hashes here.

File details

Details for the file pytket-1.5.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.5.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e4a1ecd9d53efbaf7599c6016a0ea1e38d96163f1ce46369f016de964fdbe05d
MD5 1bf9bbe0b382910b29901da1236bd6b3
BLAKE2b-256 da70f971370a37c61dc149fcda0eae6f0dabc255787d2ed13d265eda50ffc0af

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page