Skip to main content

Python module for interfacing with the CQC tket library of quantum software

Project description

Pytket is a python module for interfacing with TKET, an optimising compiler for quantum circuits developed by Cambridge Quantum. In addition to pytket there are several extension modules for accessing a range of quantum hardware and classical simulators. The extension modules also provide integration with several widely used quantum software tools.

The source code for the TKET compiler can be found in this github repository.

Installation

Installation is supported for Linux, MacOS and Windows. Installation requires python 3.8, 3.9 or 3.10.

To install run the pip command:

pip install pytket

See Installation troubleshooting for help with installation.

To install the pytket extension modules add a hyphen and the extension name to the command:

pip install pytket-quantinuum

For a list of pytket extensions see this page: https://cqcl.github.io/pytket-extensions/api/index.html.

Documentation and Examples

API reference: https://cqcl.github.io/tket/pytket/api/

To get started using pytket see the user manual.

For worked examples using TKET see our examples repository.

Support and Discussion

For bugs and feature requests we recommend creating an issue on the github repository.

User support: tket-support@cambridgequantum.com

For discussion, join the public slack channel here.

Mailing list: join here.

Citation

If you wish to cite TKET in any academic publications, we generally recommend citing our software overview paper for most cases.

If your work is on the topic of specific compilation tasks, it may be more appropriate to cite one of our other papers:

  • "On the qubit routing problem" for qubit placement (a.k.a. allocation) and routing (a.k.a. swap network insertion, connectivity solving). https://arxiv.org/abs/1902.08091 .
  • "Phase Gadget Synthesis for Shallow Circuits" for representing exponentiated Pauli operators in the ZX calculus and their circuit decompositions. https://arxiv.org/abs/1906.01734 .
  • "A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz" for sequencing of terms in Trotterisation and Pauli diagonalisation. https://arxiv.org/abs/2007.10515 .

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytket-1.5.1.1-cp310-cp310-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytket-1.5.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pytket-1.5.1.1-cp310-cp310-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytket-1.5.1.1-cp310-cp310-macosx_10_14_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pytket-1.5.1.1-cp39-cp39-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pytket-1.5.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pytket-1.5.1.1-cp39-cp39-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pytket-1.5.1.1-cp39-cp39-macosx_10_14_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

pytket-1.5.1.1-cp38-cp38-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

pytket-1.5.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pytket-1.5.1.1-cp38-cp38-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pytket-1.5.1.1-cp38-cp38-macosx_10_14_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pytket-1.5.1.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pytket-1.5.1.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.5.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 788d2a3ffbf2eeef39bfe321c29ba8b6bb1744641eb092787d21ae65b26f1a59
MD5 23ef4754406690536d20f22cbe190bfb
BLAKE2b-256 3019099a131ad1d3db7db7c85f20b6fae484daf63fae3be4ab928683499bbbdf

See more details on using hashes here.

File details

Details for the file pytket-1.5.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.5.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 269dbaaef53024c06381cf9f5bbdb11535ebdf3c92786db5056928418f378a84
MD5 e81c1e496f88aba59af6e032bd9a46be
BLAKE2b-256 626956fbb64e1f7531b9748276e489b9668b557c5487078c5948882063e475fa

See more details on using hashes here.

File details

Details for the file pytket-1.5.1.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.5.1.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9d43e5ccff962d01793dca70900427c50c4b44a1e58cddce96d056f62439494e
MD5 0cf9f87fea87d660dc17c569d46f0831
BLAKE2b-256 e4c7c234306795b501c5939826e5da803a8298331fca0de7759767ebd4d99beb

See more details on using hashes here.

File details

Details for the file pytket-1.5.1.1-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.5.1.1-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f20c7eeeabe60ed6d3f0ae54fe6910cd496bc2c590436ac3bdc2b997714391e0
MD5 894e1eb30e3b596b7ddd602f7fa8846e
BLAKE2b-256 a6c5d0de86e68cabca5aec8816d52a3f6c1d89294e59b200acc3c1cb8270fd83

See more details on using hashes here.

File details

Details for the file pytket-1.5.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytket-1.5.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.5.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a3b509dd8681c10c77dbab325edcff7076a6890a2be2ff71937b7d62b452f1da
MD5 2bab430e3771e7aa538c7c3c6b47fd58
BLAKE2b-256 296864ec3559b89248b6ccbe454f22f07b50a12c2580549838bcfad266affc7d

See more details on using hashes here.

File details

Details for the file pytket-1.5.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.5.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f544730c6902a5f55a6dd29623b62907d1ab6a7054792e5842793a45ba7194e
MD5 0dbe3955ac0c771d5376a8ae3dac2f5b
BLAKE2b-256 a881fcdb1f01fe6825e7541d9b947ea1f1afdf5bfb6e8b17f14406ffa27960d7

See more details on using hashes here.

File details

Details for the file pytket-1.5.1.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.5.1.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bcd3159e680b4d01f95b9a2189034fc208916fae7273e3981186b3c7890b8aeb
MD5 608425c577cccaf8c9dcc4513945fb12
BLAKE2b-256 a68848d6ea5eacea421a50c60b4841ad4d2cf2b7c212feefd64690a17adb32f6

See more details on using hashes here.

File details

Details for the file pytket-1.5.1.1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.5.1.1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8972bdc65686d2ea457b900a1ed5cef148827b2ea823329ddaf0aef7eb7d099b
MD5 5eab726cffc15048678cc4613b370e97
BLAKE2b-256 ccbe0133aeceaf691c67e42068b94e82fc0eb586f55ade4c370d7d9527c5ddf5

See more details on using hashes here.

File details

Details for the file pytket-1.5.1.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pytket-1.5.1.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.5.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4ce755bd255581842e58353e2d240740de00899f182499840939709a9f68c8d3
MD5 19ea8b2c05a2c67bcb04e4ee8b1a5312
BLAKE2b-256 e402acee00482757b57f016e2ed70b96612913231c452169e863b2f44735803a

See more details on using hashes here.

File details

Details for the file pytket-1.5.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.5.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dc49c5c164bcfc6005d59b5a1c50d1d5ad8645a1b8a726e63249d1e293246399
MD5 fadb53c29fc8a1b5596756e026f9cafa
BLAKE2b-256 5ccafc6e9e32c952db54ea0ffce9bee13a39ba6ef782ce537371a7019cf8f6bd

See more details on using hashes here.

File details

Details for the file pytket-1.5.1.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.5.1.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5ee2acc1d8e30430211d101ab1dc29b0cf2eb7c91ce6d14e7400dbe71e9d9617
MD5 6f48559ad6a9ec3ca9b05caf8e824135
BLAKE2b-256 f05b99aa7b5bcdd715fccf58b8613201a2bcefb374bd1e4e24fae4420dd5ab5b

See more details on using hashes here.

File details

Details for the file pytket-1.5.1.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.5.1.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e747b256395832767777a107745a909ddac08e31dcd7f3299cfeb8ebe0ceea30
MD5 9ca415c8b196ab1077981295a6280b48
BLAKE2b-256 56dab7218e23a9a7518b12c864f15c30e3cfacf65a5859f791a3d4df50428739

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page