Skip to main content

Python module for interfacing with the CQC tket library of quantum software

Project description

Pytket is a python module for interfacing with TKET, an optimising compiler for quantum circuits developed by Cambridge Quantum. In addition to pytket there are several extension modules for accessing a range of quantum hardware and classical simulators. The extension modules also provide integration with several widely used quantum software tools.

The source code for the TKET compiler can be found in this github repository.

Installation

Installation is supported for Linux, MacOS and Windows. Installation requires python 3.8, 3.9 or 3.10.

To install run the pip command:

pip install pytket

See Installation troubleshooting for help with installation.

To install the pytket extension modules add a hyphen and the extension name to the command:

pip install pytket-quantinuum

For a list of pytket extensions see this page: https://cqcl.github.io/pytket-extensions/api/index.html.

Documentation and Examples

API reference: https://cqcl.github.io/tket/pytket/api/

To get started using pytket see the user manual.

For worked examples using TKET see our examples repository.

Support and Discussion

For bugs and feature requests we recommend creating an issue on the github repository.

User support: tket-support@cambridgequantum.com

For discussion, join the public slack channel here.

Mailing list: join here.

Citation

If you wish to cite TKET in any academic publications, we generally recommend citing our software overview paper for most cases.

If your work is on the topic of specific compilation tasks, it may be more appropriate to cite one of our other papers:

  • "On the qubit routing problem" for qubit placement (a.k.a. allocation) and routing (a.k.a. swap network insertion, connectivity solving). https://arxiv.org/abs/1902.08091 .
  • "Phase Gadget Synthesis for Shallow Circuits" for representing exponentiated Pauli operators in the ZX calculus and their circuit decompositions. https://arxiv.org/abs/1906.01734 .
  • "A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz" for sequencing of terms in Trotterisation and Pauli diagonalisation. https://arxiv.org/abs/2007.10515 .

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytket-1.5.2-cp310-cp310-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytket-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pytket-1.5.2-cp310-cp310-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytket-1.5.2-cp310-cp310-macosx_10_14_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pytket-1.5.2-cp39-cp39-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pytket-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pytket-1.5.2-cp39-cp39-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pytket-1.5.2-cp39-cp39-macosx_10_14_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

pytket-1.5.2-cp38-cp38-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

pytket-1.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pytket-1.5.2-cp38-cp38-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pytket-1.5.2-cp38-cp38-macosx_10_14_x86_64.whl (9.9 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pytket-1.5.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pytket-1.5.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.5.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2dfd301500c5456c3f8b78b9b76baeda2ad0dfb01ef70a0331447fe7d53d1700
MD5 a6fd8c3b04f5189b91bc355261e70ef8
BLAKE2b-256 0cafdf1489763b4bef4811a757acb768b5e4d97a09c3d5f33534f076981955e4

See more details on using hashes here.

File details

Details for the file pytket-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1fad8788893b13991475677b7416916db6646c18774e3b5c26233506be0885a0
MD5 ba8268b64e1c63d65bba3db01d8143ac
BLAKE2b-256 fa6183cc218747f147b06f5a7ab76cdd818f00fac94c635915bbcf18a10bac2c

See more details on using hashes here.

File details

Details for the file pytket-1.5.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.5.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 133ae799ce46a21f5238cbfc36f781bb2b1b4cf94a1b9f7b32c7d4115d0e70e9
MD5 0857805f9a46cb4bb1e19f98cc80e271
BLAKE2b-256 97e3e9b63553e4c8a180120101642f809d650218bc113837020100760641d84b

See more details on using hashes here.

File details

Details for the file pytket-1.5.2-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.5.2-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0b18296e046ef92ee893fc7804436574abcbfa7e1949b48777cc4de05c05a752
MD5 8c14ba1575a26ef6da020b4efb058753
BLAKE2b-256 ce630bda8b19b4cf9eacda3e4d7810d596f42470a68dd4bca361c6adc30e2ef0

See more details on using hashes here.

File details

Details for the file pytket-1.5.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytket-1.5.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.5.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 26c05ee85e908003c6546a86d2ca7ebc786eba5ba5c418e7d1ac1f5a2f6a3e32
MD5 9572b14f9d8ca62d323bcd5edbab40fb
BLAKE2b-256 127a4383df7e45d9f7657579670bf00f8e3f6456a4dc871fe790363e334b51e0

See more details on using hashes here.

File details

Details for the file pytket-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4f3235fcb502394bd609cf1ad3dad3547fb47115224bfbcad680d7471b69d25
MD5 d35bc523a381bcebbcdbdb5353cf0383
BLAKE2b-256 d46a9bf8996514316714dcca020967e4e71a72b6121a0abfd06ded90d6130fa0

See more details on using hashes here.

File details

Details for the file pytket-1.5.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.5.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 58051c6bbf09d0615e2160f77deda812f5678a14006d6b4e4a2ecfca0e262ff1
MD5 b13c26590501f7dfb95a5f424b12ecdb
BLAKE2b-256 d403151189dde9e61530c58f2384cd1dee74fd0205d7f63702bc46111ca3c559

See more details on using hashes here.

File details

Details for the file pytket-1.5.2-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.5.2-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f71b594ae9734893a24b70b3f42c9474697bd7d9041ca80011b753680a5ca182
MD5 688e03fd58facced595069819d18f71e
BLAKE2b-256 2c2570187616de84bff033dab83810398e2483d70d69418d1c7822a3b17c9ad8

See more details on using hashes here.

File details

Details for the file pytket-1.5.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pytket-1.5.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pytket-1.5.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fc0075cf8ca4e60291a490dd2c3a2d8395d8c3dfb394d5915e7131f824bc3aee
MD5 ccacbc5c880441a8f708b97a3df64fe6
BLAKE2b-256 e9c1d29f4796a64151d523764ee6af71aba246c4a70d6085674e2215136b5c84

See more details on using hashes here.

File details

Details for the file pytket-1.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e8d51887ec24cdec92b474365e7271985ad18963624e116640387fc1b571271
MD5 3e80f7a1d37be096c085eea0564f98d2
BLAKE2b-256 945dcfc49e7b5588d51d21c57f602fe5bf09f787686e2f8a3751711e4cb7c1f5

See more details on using hashes here.

File details

Details for the file pytket-1.5.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.5.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1df859a936c27edf173ccfdb984796accbce3e71438bd5d4f585b4083336c8e4
MD5 72331ded960b1a4acff2b604b95365ab
BLAKE2b-256 0f25709e97865d947446b47897643e0896036478fd2d71a09b906b6f5f317be8

See more details on using hashes here.

File details

Details for the file pytket-1.5.2-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.5.2-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 bbc2bd61aba766c0a509958d6c8b706a350295e642bf39f7ea2cd111697edd46
MD5 0a492a35bbe3c48db90a8c3e1dd535c3
BLAKE2b-256 a70723bbc7a043100956dcbcc5e5658436a8834de4b87d3d9579002c73b6f00e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page