Skip to main content

Python module for interfacing with the CQC tket library of quantum software

Project description

Pytket is a python module for interfacing with TKET, an optimising compiler for quantum circuits developed by Cambridge Quantum. In addition to pytket there are several extension modules for accessing a range of quantum hardware and classical simulators. The extension modules also provide integration with several widely used quantum software tools.

The source code for the TKET compiler can be found in this github repository.

Installation

Installation is supported for Linux, MacOS and Windows. Installation requires python 3.8, 3.9 or 3.10.

To install run the pip command:

pip install pytket

See Installation troubleshooting for help with installation.

To install the pytket extension modules add a hyphen and the extension name to the command:

pip install pytket-quantinuum

For a list of pytket extensions see this page: https://cqcl.github.io/pytket-extensions/api/index.html.

Documentation and Examples

API reference: https://cqcl.github.io/tket/pytket/api/

To get started using pytket see the user manual.

For worked examples using TKET see our examples repository.

Support and Discussion

For bugs and feature requests we recommend creating an issue on the github repository.

User support: tket-support@cambridgequantum.com

For discussion, join the public slack channel here.

Mailing list: join here.

Citation

If you wish to cite TKET in any academic publications, we generally recommend citing our software overview paper for most cases.

If your work is on the topic of specific compilation tasks, it may be more appropriate to cite one of our other papers:

  • "On the qubit routing problem" for qubit placement (a.k.a. allocation) and routing (a.k.a. swap network insertion, connectivity solving). https://arxiv.org/abs/1902.08091 .
  • "Phase Gadget Synthesis for Shallow Circuits" for representing exponentiated Pauli operators in the ZX calculus and their circuit decompositions. https://arxiv.org/abs/1906.01734 .
  • "A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz" for sequencing of terms in Trotterisation and Pauli diagonalisation. https://arxiv.org/abs/2007.10515 .

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytket-1.6.1-cp310-cp310-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytket-1.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pytket-1.6.1-cp310-cp310-macosx_11_0_arm64.whl (9.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytket-1.6.1-cp310-cp310-macosx_10_14_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pytket-1.6.1-cp39-cp39-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pytket-1.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pytket-1.6.1-cp39-cp39-macosx_11_0_arm64.whl (9.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pytket-1.6.1-cp39-cp39-macosx_10_14_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

pytket-1.6.1-cp38-cp38-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

pytket-1.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pytket-1.6.1-cp38-cp38-macosx_11_0_arm64.whl (9.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pytket-1.6.1-cp38-cp38-macosx_10_14_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pytket-1.6.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pytket-1.6.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pytket-1.6.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 25bb663759d125e82a060f644d153a14fa507cb7d8d01673538efb2dd30bb4c9
MD5 719c738df5f719ecc0e7d6c0cbca9abb
BLAKE2b-256 597eeb2234bbf8f4b7e565e9c3e8206a4727633845e265e549f726ee0a558f7e

See more details on using hashes here.

File details

Details for the file pytket-1.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b7f073f067a22dfd363bea35b4f1f79fb6221570e25be552486c94443a74413
MD5 30cba0591a6f1aaacd14be26a976b199
BLAKE2b-256 13dfab059a9a51b170bb9eabf507e33e611777f2eb1cbbee55d83d0a3c812ee2

See more details on using hashes here.

File details

Details for the file pytket-1.6.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.6.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 be58c2728c90788d16f07e08460b1f5fe2484de2843aa6773e82d06f79252d82
MD5 5071729bfdd7250a0a8728957786910f
BLAKE2b-256 5a59a2417d6fa3e31a9bbfdc2e3a156bb3c04a04929e5516ad0f0dbf7c607f7e

See more details on using hashes here.

File details

Details for the file pytket-1.6.1-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.6.1-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 762813189eeadc8f9d3775dd2041cae252d2b6322ec663cd75db91e239c1390c
MD5 72e43d372195b9ec6f2afe24a8eb2d22
BLAKE2b-256 ed3df7b6ab41ec3aa70d8d4aab9b77c268f6bd056544c9df76c104a9710d5ada

See more details on using hashes here.

File details

Details for the file pytket-1.6.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytket-1.6.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pytket-1.6.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a1b7facf174139ea36c73b5018d881d649717ff2fccc97db1ee0fd326b7b6457
MD5 cfdc7093b00451cf814c1125cd9f6999
BLAKE2b-256 60949c544eb0961b2eace8def066c7e7e4176f3625ecb99bcf1ce739da376bcd

See more details on using hashes here.

File details

Details for the file pytket-1.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f1da8e34a9cbd4a2fc4248c70c0a16499f42faeaef8a1110cb32451b63810a0a
MD5 3272089e794c94929443cc26f8053c39
BLAKE2b-256 2d2f7988e586e12df643c8b025077cc27c692c7cca6ded5436a9051a933678f1

See more details on using hashes here.

File details

Details for the file pytket-1.6.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.6.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ab91060795fce92d71299663dabb924e369cd4e0507f0689e64d0e3081bc8cd9
MD5 18472bfa0b9ec53fc6e81ac3f95e0652
BLAKE2b-256 3e9fe097a790ed4191560fa890b1dc587d46d7ef05c0cd76f244ff084be7339f

See more details on using hashes here.

File details

Details for the file pytket-1.6.1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.6.1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a5321c2eaa2393042a4e329ad008ac1ea2d4f6d052fb88fab811f6727f35e065
MD5 fc69d4888ff9498109263322fa83c44e
BLAKE2b-256 28c541c3ff4e46d24235d9142383d74d9a6c12401aca28461437791021eeb658

See more details on using hashes here.

File details

Details for the file pytket-1.6.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pytket-1.6.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pytket-1.6.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b27dd0a3f95e02c242bcb62e5c938dd95eb906d797a29f9373303a918d05f9e8
MD5 3f81a1ec0057b62e5fbc24ea67dbe930
BLAKE2b-256 f5b7556c0cd8f7a60e33304d6b99594b34fa498e7966a9efbcbd3f501a01b4d6

See more details on using hashes here.

File details

Details for the file pytket-1.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d52dcd047daebb8f2ac23947573cc20d484f10cb822c516fb42b81cd5a9bb415
MD5 dbd1394a28a8deea966a7b2129c67b99
BLAKE2b-256 ac47717474247f995e779988b0c1339bb481e7c2f95c2eee30447de150b77050

See more details on using hashes here.

File details

Details for the file pytket-1.6.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.6.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1495d9c00b419b69bb19bcdcae548793414a024252c2e09e985daa54a3f20fa4
MD5 bb0a8fbb2c55c026843ae92c9d0c5849
BLAKE2b-256 4abdf8dc17c19068b872a627fc2bca1be7e94c2fb0936c73e0146d775ecc4ed1

See more details on using hashes here.

File details

Details for the file pytket-1.6.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.6.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 76caaf18adc840ef738eb15bfb28474b3e3aca93479b4013472030a13ed4be1f
MD5 1eec022208ad174ada4b72e7e6d10023
BLAKE2b-256 9465d330343de920cdf02dfb9b73b86482f62d8ce88d9095ad8852308149b1e0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page