Skip to main content

Python module for interfacing with the CQC tket library of quantum software

Project description

Pytket is a python module for interfacing with TKET, an optimising compiler for quantum circuits developed by Cambridge Quantum. In addition to pytket there are several extension modules for accessing a range of quantum hardware and classical simulators. The extension modules also provide integration with several widely used quantum software tools.

The source code for the TKET compiler can be found in this github repository.

Installation

Installation is supported for Linux, MacOS and Windows. Installation requires python 3.8, 3.9 or 3.10.

To install run the pip command:

pip install pytket

See Installation troubleshooting for help with installation.

To install the pytket extension modules add a hyphen and the extension name to the command:

pip install pytket-quantinuum

For a list of pytket extensions see this page: https://cqcl.github.io/pytket-extensions/api/index.html.

Documentation and Examples

API reference: https://cqcl.github.io/tket/pytket/api/

To get started using pytket see the user manual.

For worked examples using TKET see our examples repository.

Support and Discussion

For bugs and feature requests we recommend creating an issue on the github repository.

User support: tket-support@cambridgequantum.com

For discussion, join the public slack channel here.

Mailing list: join here.

Citation

If you wish to cite TKET in any academic publications, we generally recommend citing our software overview paper for most cases.

If your work is on the topic of specific compilation tasks, it may be more appropriate to cite one of our other papers:

  • "On the qubit routing problem" for qubit placement (a.k.a. allocation) and routing (a.k.a. swap network insertion, connectivity solving). https://arxiv.org/abs/1902.08091 .
  • "Phase Gadget Synthesis for Shallow Circuits" for representing exponentiated Pauli operators in the ZX calculus and their circuit decompositions. https://arxiv.org/abs/1906.01734 .
  • "A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz" for sequencing of terms in Trotterisation and Pauli diagonalisation. https://arxiv.org/abs/2007.10515 .

Project details


Release history Release notifications | RSS feed

This version

1.7.3

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytket-1.7.3-cp310-cp310-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytket-1.7.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pytket-1.7.3-cp310-cp310-macosx_11_0_arm64.whl (9.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pytket-1.7.3-cp310-cp310-macosx_10_14_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pytket-1.7.3-cp39-cp39-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

pytket-1.7.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pytket-1.7.3-cp39-cp39-macosx_11_0_arm64.whl (9.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pytket-1.7.3-cp39-cp39-macosx_10_14_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

pytket-1.7.3-cp38-cp38-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

pytket-1.7.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pytket-1.7.3-cp38-cp38-macosx_11_0_arm64.whl (9.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pytket-1.7.3-cp38-cp38-macosx_10_14_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file pytket-1.7.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pytket-1.7.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pytket-1.7.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d9112b4b863aa188b2913b9bd8f412f554685b66413e165bccb65aff38b93e89
MD5 aa9ab96ade9887ec3dd4da7f44c2e55e
BLAKE2b-256 505c56f7a738f6204b5d5e14c086038736103c7192bcf13aa98c3148627c5169

See more details on using hashes here.

File details

Details for the file pytket-1.7.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.7.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69df40b53491523f8b564dd80661ba16f086a7b369a53df655631211238cf2f0
MD5 4bc461ca95bc65b7121cdd2326d86b87
BLAKE2b-256 728acd85c84ff098d4c38fd3b3ccfee219ceb42d779e0c8b03e9200f9bc18aee

See more details on using hashes here.

File details

Details for the file pytket-1.7.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.7.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4a18da4007fcb3f53825e6570a6b1e59e5b38ce660271cfff49dfef1a0a7b65a
MD5 84323036eb79c4bc0af3aecf7b1c24cb
BLAKE2b-256 e1d4a2f4d9c6ace4bfa49779db4aa11b1db6990418b51b0bf2517a273755571a

See more details on using hashes here.

File details

Details for the file pytket-1.7.3-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.7.3-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b2df998a17b6f2082eb39b2268f51cbe1bccfa589d9c6eb3028ad60ee85eab2e
MD5 efb5eab566fb22be6321df54c954c374
BLAKE2b-256 481c3bc2b62f4d1f99eecf99ea90a7ea212cb1394d9d4bbaa06b7989c47814e5

See more details on using hashes here.

File details

Details for the file pytket-1.7.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pytket-1.7.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pytket-1.7.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 37f118ea522139f0cd8b8c66d133442a87afdbfb55a56812ce5ccbd6fc6c2b36
MD5 a66600640ee63045d67d4df71c74aaf1
BLAKE2b-256 eb8c13a231cedf0900994b8db693dc19563d270284db482e2282768907ad9d27

See more details on using hashes here.

File details

Details for the file pytket-1.7.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.7.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 93cc2371fd0d8c5a8f79d2fc7f6acd74bd6ac5c7d7ac7718e5c69f1d2cad1368
MD5 bc7efb321b58cd6dc1c8f1c9fabf9ac3
BLAKE2b-256 12d2c9f7f3cf124fa4fbd67a82aaab94b73a7aa63d810df3481b5fd77affa0ee

See more details on using hashes here.

File details

Details for the file pytket-1.7.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.7.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 48f043a344be584154a8bb09f90ab5b9be355e74e24be1c365329c8fca0db2d5
MD5 96d642d22d56f955479cbe4d5c5e3b20
BLAKE2b-256 6bd602e3f49950137a9621b821a2f2794549dfa88291bbe2a22105a1c36dad6e

See more details on using hashes here.

File details

Details for the file pytket-1.7.3-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.7.3-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ac791c6852f1aa130faeed519237a852387c2fac2df9309efb49baa149235d92
MD5 3e4c30b4a0d7c936722223988b28d53e
BLAKE2b-256 c4928b7944a66ecd701fc7159768db99490bce4f053de58058740943190e4de1

See more details on using hashes here.

File details

Details for the file pytket-1.7.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pytket-1.7.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for pytket-1.7.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 98468340a49d0367b91485acf1e070af5eda46d43ac6c7a2b04d2511dedc240c
MD5 8f1d6f50eaaea009d8be5b4107a59719
BLAKE2b-256 a452d7df798d2628536d99ed9677348edea40205103e51f19c2e8d26f2d78eec

See more details on using hashes here.

File details

Details for the file pytket-1.7.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.7.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 84c738d88dd765a267a5ef7fa3269f38ac9a246c93abe8fc36d24bc905b8df61
MD5 96e6ea11b52abb28603e6eeee6c5b8b6
BLAKE2b-256 090aa73020ebdb7e760723cee1f57602e40de95e9e1b92184b7a1940dc544cc5

See more details on using hashes here.

File details

Details for the file pytket-1.7.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.7.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 512cef80a537b31157927bcceecc08da7d3feb4d6a9b0b2d27bac3c64048c49f
MD5 d49cf249b559fb4d43adeb95846e9ba2
BLAKE2b-256 7c99df419749ccb909c7f1cefb46640ebde75d83fbe67b45bd78e3750eb8eda6

See more details on using hashes here.

File details

Details for the file pytket-1.7.3-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.7.3-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 fa598b1bfb1fb29c5782d126aa153efe7730c1811667fe3d47d13474365faaad
MD5 7562ae9bce82e8a2a3032096c7ecf550
BLAKE2b-256 67aca5dd51a5ec0920ebf0b6a47e917d46f8debfa76c6fe7216641f31ebd0073

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page